Transcatheter Therapy for Coarctation of the Aorta: The Results of Our Efforts

David Nykanen MD

The Heart Center at Arnold Palmer Hospital for Children, Orlando, Florida

SOLACI 2017
Buenos Aires, Argentina
August 3, 2017
No conflicts relevant to this presentation
Supporters of the CCISC

B Braun
Cook
Gore
Medtronic

NuMed
Siemens
St Jude Medical
PediaVascular
Safety and Efficacy: The Data

Tough to make fair comparisons in the contemporary literature due to evolution in treatment

Surgery 70 years / Transcatheter 25 years

Stent CCISC, COAST
Surgical: literature, CCISC

CCISC = Congenital Cardiovascular Interventional Study Consortium
COAST = COA rctation Stent Treatment STUDY
Stent Placement versus Surgery for Coarctation of the Thoracic Aorta

976+3 Studies
Remove duplicates

743
Screen titles and abstracts for obvious irrelevance

18
Secondary Screening:
Multiple reports of Same study Cohort

“We planned ……”

5
Full text review for eligibility

0
Stent /Surgery
Current Realities

- 99.1% of patients in the CCISC Consortium with recurrent coarctation of the aorta, regardless of the location or complexity underwent transcatheter therapy

- The vast majority would agree that surgery remains the “gold standard” in neonates (though stent treatment has been used in selective neonates with complex aortic obstruction)

- Covered stents (CP) have only recently become available in the United States
“Pseudo” Meta Analysis
Surgery versus Balloon Angioplasty

• 9 Studies of 625 pts; 378 Sx / 245 BA
• No Difference in Post intervention gradient – Immediate, Mid-term Long term

• BA more short-term reCoa: OR 0.25 [0.12-0.54]
• BA less severe complications: OR 2.67 [1.37-5.21]
• BA more aneurysm formation OR 0.12 [0.04-0.34]

Pediatric Cardiac Care Consortium
1982 - 2007

• 7860 pts had a coa repair reported 1982-2007: 70% isolated coarctation
 45% were done in first 30 days

• Hypoplastic arch 4.6%; Mortality 10.6%

• Mortality of isolated coa 2.0%

 Operative year was a significant variable

STS-CHSD
2006-2010

• 2705 pts/95 centers with Isolated Coa +/- TAH
• 75% < 1 year of age at time of repair
• 90% End to end / Extended end to end

• Operative Mortality 1%
• Complications in 25%
• No long term follow-up

RM Ungerleider et al. JTCVS
Evolution of Surgical Repairs by Decade
Mayo Clinic Experience of over 800 patients

Surgical Repairs by Age
CCISC Experience in Native Coarctation

Years at Surgery

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Tube Graft</th>
<th>Subclav Flap</th>
<th>Patch</th>
<th>End-to-End</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 to 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 to 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCISC Surgery / Stent Data

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Surgery (n = 99)</th>
<th>Balloon (n = 144)</th>
<th>Stent (n = 349)</th>
<th>p-value (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years; mean ± SD)</td>
<td>9.4±8.7</td>
<td>9.0±8.0</td>
<td>16.4±10.9</td>
<td><0.001*</td>
</tr>
<tr>
<td>Weight (kg; mean ± SD)</td>
<td>33.6±22.7</td>
<td>30±21</td>
<td>53.5±24.1</td>
<td><0.001*</td>
</tr>
<tr>
<td>Male (vs. Female %)</td>
<td>70%</td>
<td>64%</td>
<td>67%</td>
<td>0.715</td>
</tr>
<tr>
<td>Pre-Intervention Right-arm Sys. BP (mmHg; mean ± SD)</td>
<td>136±19</td>
<td>138±23</td>
<td>142±21</td>
<td>0.009*</td>
</tr>
<tr>
<td>Pre-Intervention ULG (mean ± SD)</td>
<td>36±21</td>
<td>43±23</td>
<td>40±23</td>
<td>0.167</td>
</tr>
<tr>
<td>Coarctation Location (%)</td>
<td></td>
<td></td>
<td>0.004*</td>
<td></td>
</tr>
<tr>
<td>Isthmus</td>
<td>82%</td>
<td>95%</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>Distal</td>
<td>48%</td>
<td>63%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>34%</td>
<td>32%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Transverse Aorta</td>
<td>12%</td>
<td>2%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td>5%</td>
<td>2%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Abdominal/Thoracic Aorta</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Bicuspid Aortic Valve (%)</td>
<td>46%</td>
<td>46%</td>
<td>41%</td>
<td>0.351</td>
</tr>
<tr>
<td>Shone</td>
<td>0%</td>
<td></td>
<td>1%</td>
<td>0.580</td>
</tr>
<tr>
<td>Other CHD Diagnosis (%)</td>
<td>11%</td>
<td>5%</td>
<td>9%</td>
<td>0.564</td>
</tr>
</tbody>
</table>

* P-value < 0.05
Any Difference in Efficacy?
Acute Blood Pressure Changes

Pre vs Post Clinical BP’s-Surgery (n=99)

Pre vs Post Clinical BP’s-Stent (n=349)
Any Difference in Efficacy?
Comparisons at Intermediate Follow-up

Clinical Parameters
- Normal BP
- Anti-Hypertensive Meds
- ULG < 10 mmHg
- ULG < 15 mmHg

Percent Patients
- Surgery (48)
- Stent (169)
- COAST Stent (87)
CCISC Complications Data

Table 3: Acute Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Surgery (n = 99)</th>
<th>Balloon (n = 144)</th>
<th>Stent (n = 349)</th>
<th>p-value (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Intervention Right-arm Sys. BP (mmHg; mean ± SD)</td>
<td>119 ± 14</td>
<td>118 ± 15</td>
<td>124 ± 16</td>
<td>0.013*</td>
</tr>
<tr>
<td>Discharge ULG (Mean ± SD)</td>
<td>5.1 ± 17.2</td>
<td>10.3 ± 12.9</td>
<td>4.1 ± 13.6</td>
<td>0.643</td>
</tr>
<tr>
<td>Discharge ULG ≤10 mmHg (%)</td>
<td>72%</td>
<td>56%</td>
<td>78%</td>
<td>0.288</td>
</tr>
<tr>
<td>Discharge ULG ≤15 mmHg (%)</td>
<td>79%</td>
<td>69%</td>
<td>84%</td>
<td>0.228</td>
</tr>
<tr>
<td>Any Complications (%)</td>
<td>19.2%<sup>1</sup></td>
<td>9.8%</td>
<td>2.0%</td>
<td><0.001*</td>
</tr>
<tr>
<td>Aortic Wall Complications (%)</td>
<td>UK<sup>2</sup></td>
<td></td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Balloon Rupture (%)</td>
<td>n/a</td>
<td>0.0%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Stent Migration (%)</td>
<td>n/a</td>
<td>n/a</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>Femoral (%)</td>
<td>UK<sup>2</sup></td>
<td>0.0%</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Severe/Prolonged Hypertension</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Length of Stay in days (mean/median)</td>
<td>6.1 / 5.0</td>
<td>3.6 / 1.0</td>
<td>2.4 / 1.0</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

¹ Complications experienced by surgical patients are: severe/prolonged hypertension, atrial fibrillation, stroke, chylothorax, and vocal cord paralysis.

² "UK" indicates unknown as these types of complications are not routinely evaluated for surgical patients.

* P-value < 0.05
Evolution of Stent Complications

Acute Complication Trend in Stenting Coarctation of the Aorta

- Prior Jan 2002 (n=312)
- Post Jan 2002 (n=275)
- CCISC Prospective (n=551)

Percentage

- All Comp
- Aortic Wall Comp
- Technical Comp
Aneurysms
Aneurysm Formation Following Surgical Coarctation Repair

Type A Aneurysm

Associated with bicuspid aortic valve

Local Aneurysm @ Coarctation Site

Aneurysm Formation Following Surgical Coarctation Repair Meta Analysis

Overall aneurysm rate for all repairs 9%

End-to-End Anastomosis lowest risk for developing aneurysms (3%; 0-26.8%)
 • “Simple Coarctation” of the aorta

Patch: highest risk for aneurysms (14%; 3-51.7%)

Tube graft: (6%; 0-10.7%)
 • Higher for Type A aneurysms and dissections

CCISC Results

Intermediate Integrated Imaging F/u mean 36.2 months (18.1-92)

Table 5b: Intermediate Follow-up Outcomes by Integrated Imaging

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Surgery (n = 29)</th>
<th>Balloon (n = 16)</th>
<th>Stent (n = 106)</th>
<th>p-value (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Complications¹</td>
<td>20.7%</td>
<td>43.8%</td>
<td>10.4%</td>
<td>0.202</td>
</tr>
<tr>
<td>Aortic Wall Injury (%)</td>
<td>10.3%</td>
<td>43.8%</td>
<td>4.7%</td>
<td>0.368</td>
</tr>
<tr>
<td>Dissection / Intimal Tear (%)</td>
<td>0.0%</td>
<td>6.3%</td>
<td>1.0%</td>
<td>1.000</td>
</tr>
<tr>
<td>Aneurysm (%)</td>
<td>10.3%</td>
<td>43.8%</td>
<td>3.8%</td>
<td>0.169</td>
</tr>
<tr>
<td>Coarct / Dao ≥ 0.6</td>
<td>88.5%</td>
<td>93%</td>
<td>90.7%</td>
<td>0.716</td>
</tr>
<tr>
<td>Any Re-obstruction</td>
<td>17.2%</td>
<td>18.8%</td>
<td>9.4%</td>
<td>0.257</td>
</tr>
<tr>
<td>Mild²</td>
<td>6.9%</td>
<td>18.8%</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>6.9%</td>
<td>0%</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>3.5%</td>
<td>0%</td>
<td>1.9%</td>
<td></td>
</tr>
</tbody>
</table>

¹ Defined as any moderate to severe reobstruction, aortic wall injury (aneurysm, dissection, intimal tear) or stent fracture.

² Mild reobstruction was not considered as a complication in our analysis.

* P- value < 0.05
COAST Trial

• Aneurysm formation
 – 4/112 (3.5%) Acutely, 2 received Covered Stents
 – 1 noted at 12 month f/u, received Covered Stent
Aneurysm Formation

Location

For aneurysms at the coarctation site, *only* aneurysms located at the *greater curvature* of the aortic arch or “down stream” in the anterior aorta for Type A dissections have shown progression at intermediate follow-up.
Aneurysm Location

Dacron Patch Repair

Greater curvature of the arch

10 cm
Aneurysm Location

“Down Stream” anterior aorta
Stent Aneurysm Location

6 months
How about Re-obstruction?
CCISC Results

Re-intervention

Table 6: Re-intervention

<table>
<thead>
<tr>
<th></th>
<th>Surgery (n = 99)</th>
<th>Balloon (n = 144)</th>
<th>Stent (n = 349)</th>
</tr>
</thead>
<tbody>
<tr>
<td># Patients with any re-Intervention Procedures</td>
<td>8 (8%)</td>
<td>20 (14%)</td>
<td>81 (23%)</td>
</tr>
<tr>
<td># Patients with planned procedures</td>
<td>2</td>
<td>4</td>
<td>59</td>
</tr>
<tr>
<td># Patients with unplanned procedures</td>
<td>6 (6%)</td>
<td>16 (11%)</td>
<td>22 (6.3%)</td>
</tr>
<tr>
<td>Time to first planned re-intervention, yrs</td>
<td>6.8 ± 8.7</td>
<td>1.6 ± 1.7</td>
<td></td>
</tr>
<tr>
<td>Time to first unplanned re-intervention, yrs</td>
<td>2.9 ± 2.0</td>
<td>3.0 ± 1.4</td>
<td></td>
</tr>
</tbody>
</table>
What do we mean by Complex Aortic Arch?
(This is a take home message)

• Any coarctation of the aorta with associated aortic aneurysm
 — By far most common (CCISC 2003 to June 2015)

• Narrowing of the aortic arch that includes transverse arch hypoplasia (TAA:Desc Aor ratio < 0.6)
 — Distant second

• Interrupted aortic arch/tortuosity

• Long segment coarctation (> 5 mm in length) described by some surgical papers

• Anyone over the age of 21 yrs with any type of coarctation of the aorta, regardless of anatomy
Stents in Complex Aortic Arches Survival

Summary

• Transcatheter therapy is here to stay
• Acute complications seem to favor transcatheter treatment of native coarctation of the aorta
• Planned Re-interventions similar for transcatheter and surgery at 1 and 3 year follow-up
• Aneurysm appears to favor Stent over Surgery, especially when end-to-end repair can’t be performed
• Adults are always “complex”
• House of God Rule #10: If you don’t take a temperature: You can’t find a fever