

Safety of coronary revascularisation deferral based on iFR and FFR measurements in stable angina and acute coronary syndromes

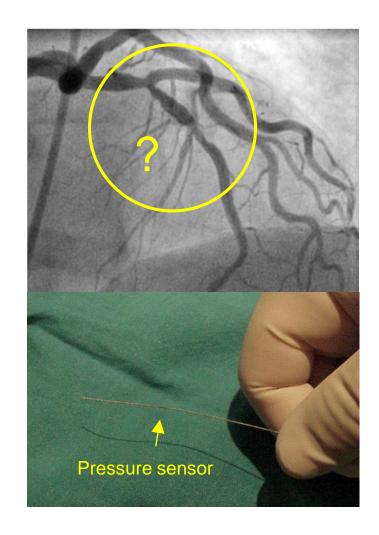
A pooled patient-level analysis of DEFINE FLAIR and IFR SWEDEHEART trials

Javier Escaned MD PhD FESC on behalf of the DEFINE FLAIR and IFR SWEDEHEART

Potential conflicts of interest

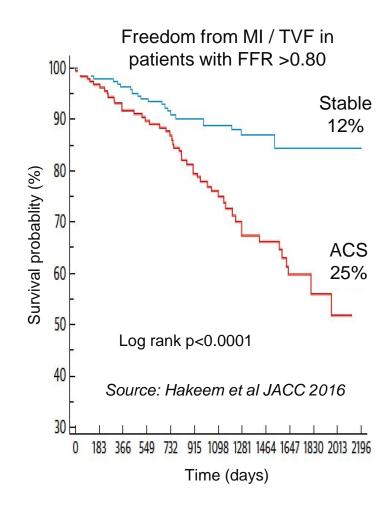
Speaker's name: Javier Escaned

I have the following potential conflicts of interest to report:

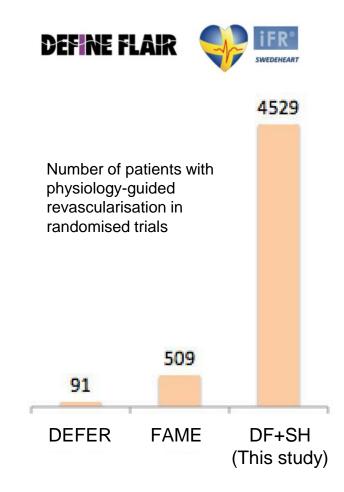

Speaker at educational events and consultancies: Abbott, AstraZeneca, Biosensors, Boston Scientific, Medtronic, OrbusNeich, Philips Healthcare

The DEFINE FLAIR and IFR SWEDEHEART studies were funded through unrestricted grants from Philips Volcano.

Background: Physiology-based deferral of coronary revascularisation


- Revascularisation deferral (i.e. decision to treat medically) is a key aspect of physiology-based coronary revascularisation.
- Evidence regarding the safety of revascularisation deferral in contemporary scenarios is scarce.
- Deferral was shown to be safe in the pivotal DEFER trial (1998-2001). Since then, major changes in PCI and pharmacological treatment that might affect outcomes have taken place.

Background: Physiology-based deferral in acute coronary syndromes


- In recent years several studies have cast doubts as to the safety of deferring PCI with FFR in patients with ACS.
- Transient microcirculatory dysfunction in culprit and non-culprit vessels, blunting hyperaemic responses, has been proposed as a mechanism.
- Given the growing proportion of patients presenting with ACS, establishing whether deferral of PCI in ACS is as safe as in stable angina is an urgent matter.

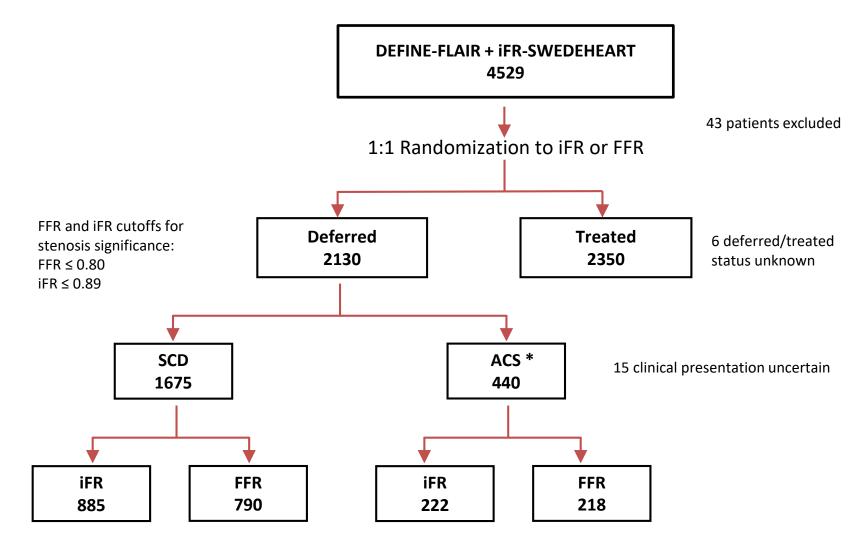
Background: FFR- and iFR-based deferral of coronary revascularisation

- The DEFINE FLAIR (DF) and iFR
 SWEDEHEART (SH) trials demonstrated
 that iFR is as safe as FFR in guiding
 myocardial revascularisation.
- Yet, it is know this finding is valid for patients in whom revascularisation is deferred.
- The pooled population of both studies (4529 patients) provides a unique opportunity to investigate the discussed aspects of revascularisation deferral in contemporary clinical practice.

Study objectives and primary endpoint

Study objectives:

To investigate if 1-year outcomes of deferred patients:


- Are similar when the decision is based on FFR or iFR measurements.
- Are influenced by clinical presentation (stable coronary disease [SCD] or acute coronary syndrome [ACS]).

Primary endpoint:

Major adverse cardiac events (MACE), defined as a composite of death, non-fatal myocardial infarction and unplanned revascularisation, at 1 year.


Study population

^{*} In ACS, only non-culprit vessels were evaluated with pressure guidewires

FFR values reflect interrogation of predominantly intermediate stenoses

Patient characteristics in the deferred and treated groups

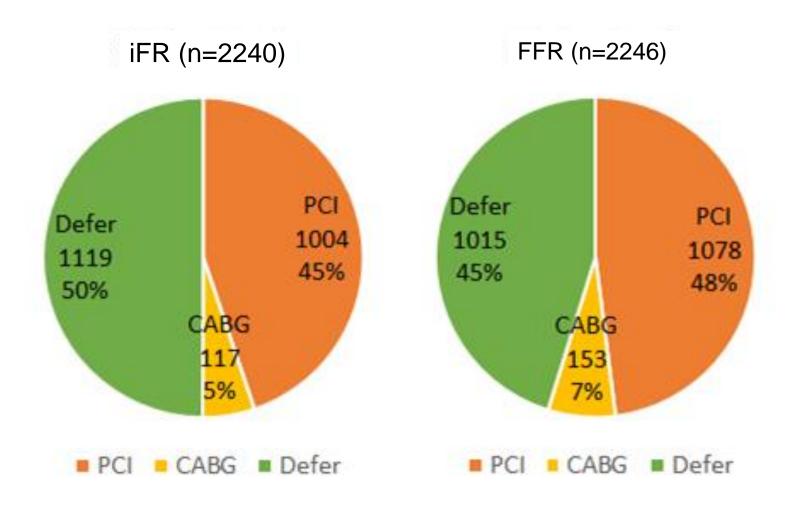
	Deferred	Treated	P value
Number of patients	2130	2350	
Age (yr), mean (sd)	66.3 (10.3)	66.3 (10.1)	0.72
Male, N (%)	1493 (70.1)	1887 (80.3)	<0.01
Diabetes mellitus, N (%)	494 (23.2)	696 (29.6)	<0.01
Previous myocardial infarction, N (%)	644 (30.2)	746 (31.7)	0.51
Previous PCI, N (%)	1207 (56.7)	1411 (60.0)	0.03

Deferred patients had a lower cardiovascular risk profile than treated patients

Clinical presentation

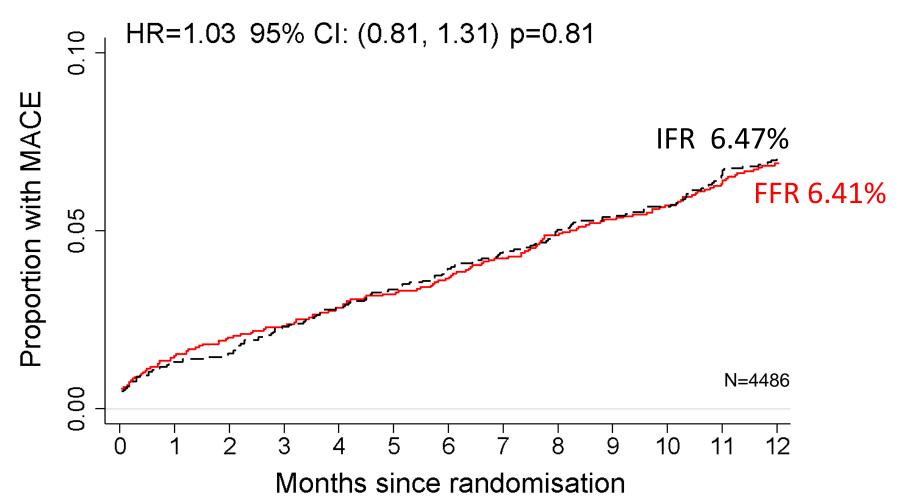
	Treated	Deferred *	P value	iFR	FFR	P value
Number of patients	2350	2130		2240	2246	
Clinical presentation			<0.01			NS
Post-STEMI**, N (%)	48 (2.0)	41 (1.9)		48 (2.0)	41 (1.9)	
Non ST ACS**, N (%)	727 (30.9)	399 (18.7)		571 (25.5)	559 (24.9)	
SCD**, N (%)	1562 (66.5)	1675 (78.6)		1604 (71.6)	1635 (72.8)	

^{* 6} patients with revascularization status unknown


ACS = Post-STEMI + Non ST ACS

Clinical presentation was balanced between iFR and FFR

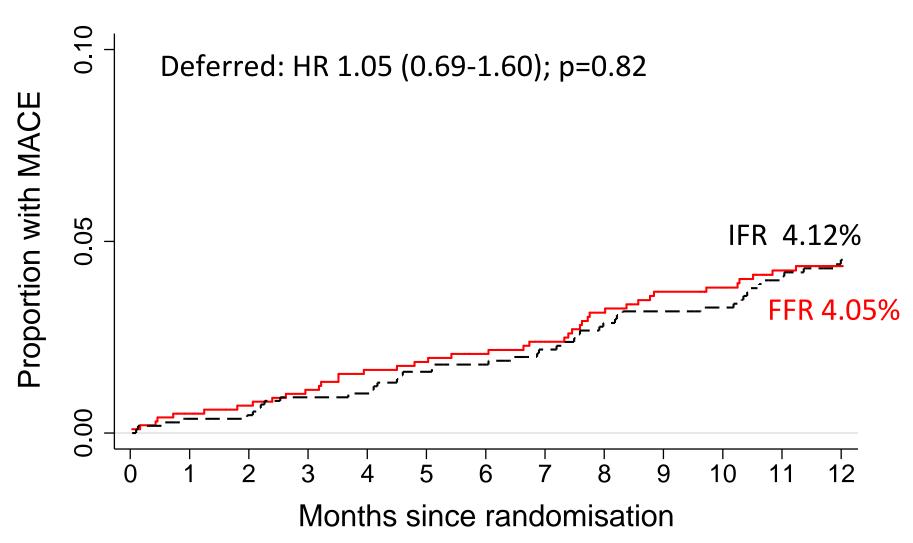
^{** 28} patients with clinical presentation uncertain


Treatment allocations with iFR and FFR

Significantly less revascularisation based on iFR interrogation (P < 0.01)

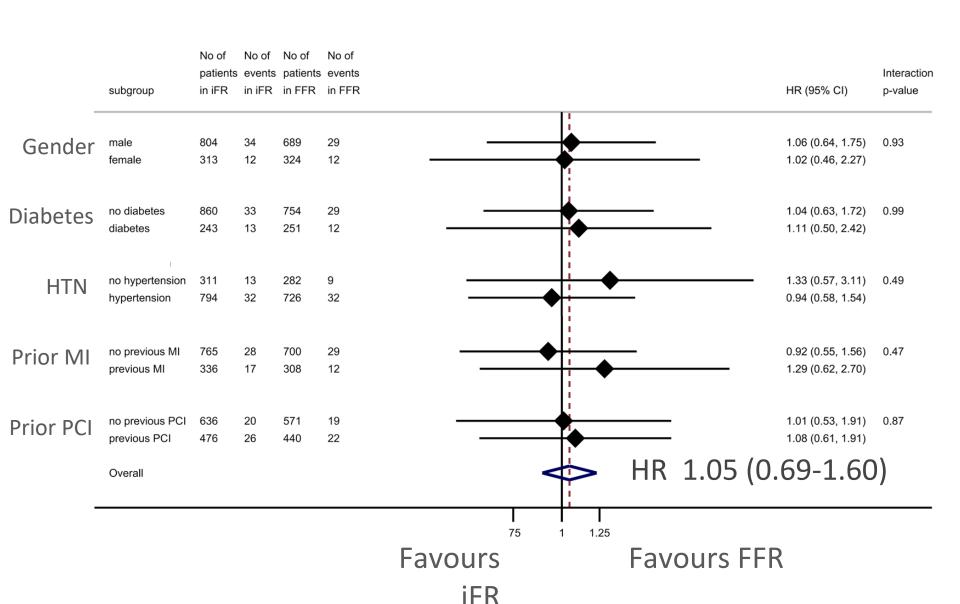
MACE in iFR and FFR guided revascularisation (all patients)

MACE similar and low at 1 year after iFR- and FFR-based revascularisation decision-making

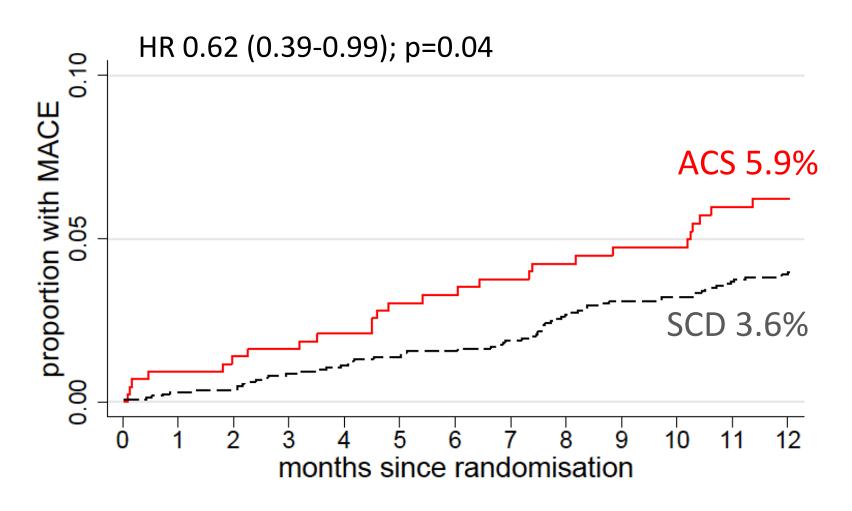

MACE components in iFR and FFR guided revascularisation (all patients)

	iFR Group	FFR Group	Hazard Ratio	P value
Outcome	N=2240	N=2246	(059/ CI)	
	no.(%)	no. (%)	(95% CI)	
Primary outcome: death from any cause, nonfatal myocardial infarction, or unplanned revascularisation	145 (6.47)	144 (6.41)	1.03 (0.81-1.31)	0.81
Death from cardiovascular causes	15 (0.67)	10 (0.45)	1.52 (0.68-3.39)	0.3
Death from noncardiovascular causes	21 (0.94)	15 (0.67)	1.42 (0.73-2.76)	0.3
Nonfatal myocardial infarction	53 (2.37)	45 (2.00)	1.19 (0.76-1.85)	0.45
Unplanned revascularisation	93 (4.15)	109 (4.85)	0.91 (0.69-1.21)	0.53

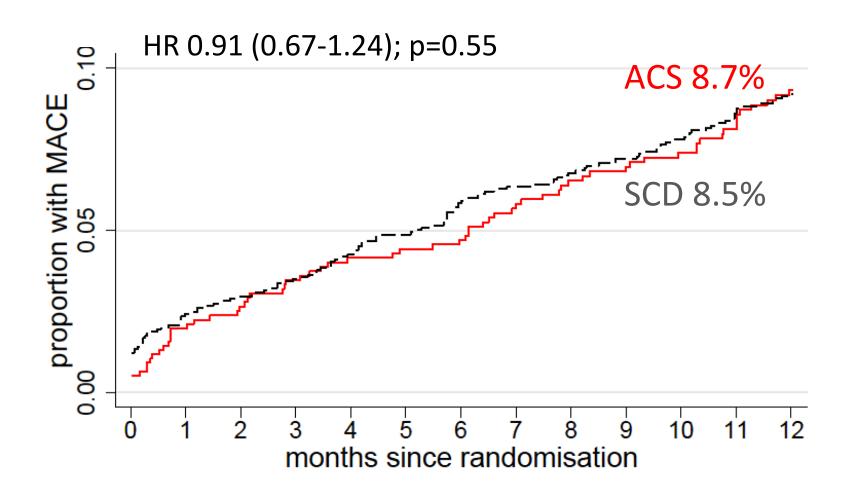
MACE components similar and low at 1 year after iFRand FFR-guided revascularisation decision-making


Outcomes in deferred patients

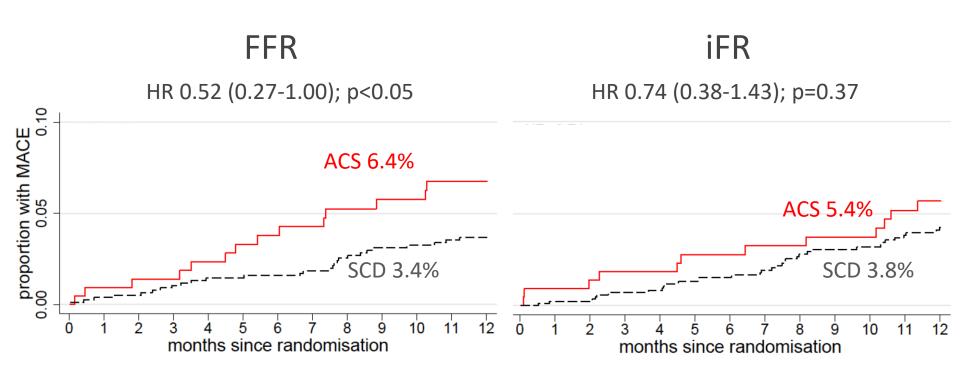
Similar and low MACE rates at 1 year after iFR- and FFR- based deferral



MACE in deferred patients - subgroup analyses

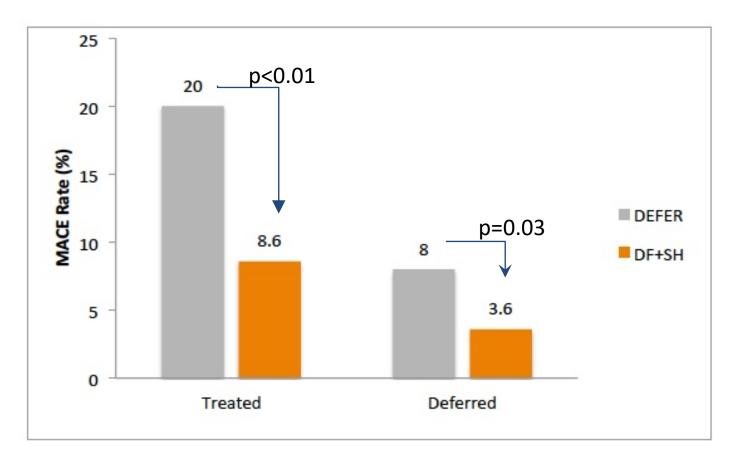

Outcomes in <u>deferred</u> patients according to clinical presentation

In deferred patients, clinical presentation did influence MACE rate


Outcomes in <u>treated</u> patients according to clinical presentation

In treated patients, clinical presentation did not influence MACE rate

Unadjusted outcomes after deferral by clinical presentation and iFR or FFR



In FFR-deferred patients,
MACE is significantly higher
in ACS than SCD

In iFR-deferred patients,
MACE is similar in ACS and
SCD

Contemporary outcomes in treated and deferred stable patients: a comparison with the historical DEFER trial (1998-2000)

Dramatic reduction in MACE at 1 year follow up in both treated and deferred revascularisation groups compared with DEFER trial

Conclusions

Deferral of myocardial revascularisation based on pressure guidewire interrogation:

- Was more frequently performed when iFR was used, compared to FFR.
- Was associated with low and similar 1-year outcomes in the FFR and iFR guided arms.
- Was associated with higher MACE rate in patients presenting with ACS than with SCD.

PCR Principal Investigators

Justin Davies Imperial College London / United Kingdom

Javier Escaned Hospital Clínico San Carlos IDISSC Madrid / Spain

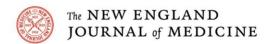
Matthias Götberg Skane University Hospital Lund / Sweden

Participating centers and investigators

Sam	Lehman	Flinders University, Adelaide	Australia	Javier	Escaned	Hospital Clinico San Carlos, Madrid	Spain
James	Sapontis	Monash Heart, Melbourne	Australia	Salvatore	Brugaletta	Hospital Clinico Y Provincial, Barcelona	Spain
Darren	Walters	The Prince Charles Hospital, Brisbane	Australia	Ann-Charlotte	Karlsson	Halmstad Hospital	Sweden
Ravinay	Bhindi	Royal North Shore Hospital, Sydney	Australia	Lennart	Sandhall	Helsingborg Hospital	Sweden
Christiaan	Vrints	UZA - Antwerp University Hospital, Antwerp	Belgium	Jörg	Carlsson	Kalmar Hospital	Sweden
Luc	Janssens	Imelda Hospital, Bonheiden	Belgium	· ·		'	Sweden
Evald	Christiansen	Aarhus University Hospital	Denmark	Mikael	Danielewicz	Karlstad Hospital	
Ahmed	Khashaba	Al Dorrah Heart Care Hospital, Cairo	Egypt	Dimitrios	Venetsanos	Linköping University Hospital	Sweden
Mika	Laine	Helsinki University Hospital, Helsinki	Finland	Elmir	Omerovic	Sahlgrenska University Hospital	Sweden
Olaf	Göing	Sana Klinikum Lichtenberg, Berlin	Germany	Matthias	Götberg	Skåne University Hospital	Sweden
Waldemar	Bojara	Gemeinschaftsklinikum Mittelrhein, Koblenz	Germany	Pontus	Lindroos	S:t Göran Hospital	Sweden
Florian	Krackhardt	Charité Universitätsmedizin Berlin, Berlin	Germany	Jens	Jensen	Sundsvall Hospital	Sweden
Tobias	Härle	Herzzentrum Klinikum Oldenburg, Oldenburg	Germany	Stefan K.	James	Uppsala University Hospital	Sweden
Giampaolo	Niccoli	Catholic University of the Sacred Heart, Rome	Italy				
Ingibjörg	Gudmundsdottir	Reykjavik University Hospital	Iceland	Ole	Fröbert	Örebro University Hospital	Sweden
Flavio	Ribichini	University Hospital Verona, Verona	Italy	Amra	Kåregren	Västmanland Hospital Västerås	Sweden
Ciro	Indolfi	University Magna Graecia, Catanzaro	Italy	Martijn	Meuwissen	Amphia Hospital, Breda	The Netherlands
Hiroaki	Takashima	Aichi Medical University Hospital, Aichi	Japan	Jan	Piek	Academic Medical Centre, Amsterdam	The Netherlands
Hiroyoshi	Yokoi	Fukuoka Sanno Hospital, Fukuoka	Japan	Niels	Van Royen	VU University Medical Center, Amsterdam	The Netherlands
Nob	Tanaka	Tokyo Medical University Hospital, Tokyo	Japan	Murat	Sezer	Istanbul University Hospital, Istanbul	Turkey
Yuetsu	Kikuta	Fukuyama Cardiovascular Hospital, Fukuyama	Japan	Carlo	Di Mario	Royal Brompton Hospital, London	UK
Hitoshi	Matsuo	Gifu Heart Centre, Gifu	Japan	Rajesh	Kharbanda	John Radcliffe Hospital, Oxford	UK
Andrejs	Erglis	Pauls Stradins Clinical Hospital, Riga	Latvia	Andrew	Sharp	Royal Devon and Exeter University Hospital, Exeter	UK
Sérgio	Baptista	Hospital Prof. Doutor Fernando Fonseca, Amadora	Portugal	Bob	Gerber	Conquest Hospital, St Leonards on Sea	UK
Pedro	Canas Da Silva	Hospital Santa Maria, Lisbon	Portugal	lqbal	Malik	Hammersmith Hospital, Imperial College London	UK
Hugo	Vinhas	Hospital Garcia de Orta, Almada	Portugal	Kare	Tang	Basildon University Hospital, Basildon	UK
Ali	Al-Ghamdi	King Abdulaziz MedicalCity Cardiac Centre, Riyadh	Saudi Arabia	Suneel	Talwar	Royal Bournemouth Hospital, Bournemouth	UK
Farrel	Hellig	Sunninghill Hospital, Johannesburg	South Africa	Habib	Samady	Emory University Hospital, Atlanta	USA
Bon-Kwon	Koo	Seoul National University Hospital, Seoul	South Korea	Arnold	Seto	UC Irvine VA/VA Long Beach, Long Beach	USA
Chang-Wook	Nam	Keimyung University Dongsan Medical Center, Daegu	South Korea	Richard	Bach	Washington University in St Louis, St Louis	USA
Eun-Seok	Shin	Ulsan University Hospital, Ulsan	South Korea	Allen	Jeremias	Stony Brook Medicine, New York	USA
Joon-Hyung	Doh	Inje University Ilsan Paik Hospital, Goyang-si	South Korea	John	Altman	Colorado Heart and Vascular, Lakewood	USA
Eduardo	Alegria-Barrero	Torrejon University Hospital, Madrid	Spain				

PCR Special acknowledgements

- Rasha Al-Lamee
- Alphonse Ambrosia
- Maria Bertilsson
- Chris Buller
- Thomas Engstrøm
- Milaana Jacob
- Eva Jacobsson
- Hernán Mejía Rentería
- Michael Mielewczik


- Hakim-Moulay Dehbi
- Sukhjinder Nijjer
- Patrick Öhagen
- Ricardo Petraco
- Nicola Ryan
- Bruce Samuels
- Sayan Sen
- Elisa Voros
- Christopher Warenhorst

Imperial College Trials Unit Uppsala Clinical Research Centre Hospital Clínico San Carlos IDISSC

Backup slides

ORIGINAL ARTICLE

Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

J.E. Davies, S. Sen, H.-M. Dehbi, R. Al-Lamee, R. Petraco, S.S. Nijjer, R. Bhindi, S.J. Lehman, D. Walters, J. Sapontis, L. Janssens, C.J. Vrints, A. Khashaba, M. Laine, E. Van Belle, F. Krackhardt, W. Bojara, O. Going, T. Härle, C. Indolfi, G. Niccoli, F. Ribichini, N. Tanaka, H. Yokoi, H. Takashima, Y. Kikuta, A. Erglis, H. Vinhas, P. Canas Silva, S.B. Baptista, A. Alghamdi, F. Hellig, B.-K. Koo, C.-W. Nam, E.-S. Shin, J.-H. Doh, S. Brugaletta, E. Alegria-Barrero, M. Meuwissen, J.J. Piek, N. van Royen, M. Sezer, C. Di Mario, R.T. Gerber, I.S. Malik, A.S.P. Sharp, S. Talwar, K. Tang, H. Samady, J. Altman, A.H. Seto, J. Singh, A. Jeremias, H. Matsuo, R.K. Kharbanda, M.R. Patel, P. Serruys, and J. Escaned

ORIGINAL ARTICLE

Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI

M. Götberg, E.H. Christiansen, I.J. Gudmundsdottir, L. Sandhall, M. Danielewicz,
L. Jakobsen, S.-E. Olsson, P. Öhagen, H. Olsson, E. Omerovic, F. Calais,
P. Lindroos, M. Maeng, T. Tödt, D. Venetsanos, S.K. James, A. Kåregren,
M. Nilsson, J. Carlsson, D. Hauer, J. Jensen, A.-C. Karlsson, G. Panayi, D. Erlinge,
and O. Fröbert, for the iFR-SWEDEHEART Investigators*

Additional relevant information for this study can be found in the original publications of the DEFINE FLAIR and iFR SWEDEHEART trials.

http://www.nejm.org/doi/full/10.1056/NEJMoa1700445

http://www.nejm.org/doi/full/10.1056/NEJMoa1616540

PCR Procedural details iFR vs FFR

	iFR	FFR	P value
Number of patients	2240	2246	
radial-artery approach - no. patients (%)	1728 (77.1)	1693 (75.4)	0.16
mean iFR/FFR - mean (sd)	0.91 (0.09)	0.83 (0.10)	
mean iFR/FFR in treated - mean (sd)	0.87 (0.11)	0.78 (0.10)	
mean iFR/FFR in deferred - mean (sd)	0.95 (0.03)	0.89 (0.05)	
PCI - no. patients (%)	1004 (44.8)	1078 (48.0)	0.03
CABG - no. patients (%)	117 (5.2)	153 (6.8)	0.02

Conclusions

Deferral of myocardial revascularisation based on pressure guidewire interrogation:

- Was more frequently performed when iFR was used, compared to FFR.
- Was associated with low and similar 1-year outcomes in the FFR and iFR guided arms.
- Was associated with higher MACE rate in patients presenting with ACS than with SCD.