

The Role of CTA and MRI in the Workup of ACS

Gastón A. Rodriguez Granillo MD, PhD, FACC

Instituto Medico ENERI, Clinica La Sagrada Familia Buenos Aires

grodriguezgranillo@gmail.com

Disclosures

Caristo Diagnostics (Consultant)

MultiplAI Health (Consultant)

RDCom (Consultant)

Randomized trials investigating the role of CCTA vs. SOC in patients with acute chest pain

22 studies (n=9379)

Heterogeneity. $I^2 = 92\%$, $\tau^2 = 0.0216$, $\rho < 0.01$ Test for subgroup differences: $\chi^2_* = 2.29$, df = 1 ($\rho = 0.13$)

Test for subgroup differences: $\gamma_{*}^{2} = 23.02$. df = 1 (p < 0.01)

Randomized trials investigating the role of CCTA vs. SOC in patients with acute chest pain

Revascularization 1

Study	CCTA Events To	tal E	SOC vents T		Risk Ratio	RR	95%-	CI Weight	Study	CCT/ Events	7	SO(Risk Ratio	RR	95%-	Cl Weight
Risk for ACS = Group 1					E				Risk for ACS = Group 1					13			
Goldstein et al. (2007)	12	99	7	98	_	1.70	10.70: 4.1	31 3.1%	Goldstein et al. (2007)	6	99	1	98	-	- 5.94 f	0.73: 48.4	13] 1.2%
Miller et al. (2011)		30	4	30			10.28, 3.6	78.1. (13.5-1.0.7 %)	Miller et al. (2011)	-				1		CONTRACTOR	0.0%
Goldstein et al. (2011)		61	22	338			[0.64, 1.9		Goldstein et al. (2011)	14	361	8	338		1.64	0.70: 3.8	361 5.4%
Hoffmann et al. (2012)		01		499	104		[1.00, 2.1	58 STOTES	Hoffmann et al. (2012)		501	21	499	100		0.89; 25	
Litt et al. (2012)		08		462	100		10.71, 2.0		Litt et al. (2012)		908		462	1		0.84: 4.9	
Hamilton-Craig et al. (2014)	26 3	22		240	100		[1.03; 4.5	(B) (C) (C) (C)	Hamilton-Craig et al. (2014)		322		240			1.01; 11.9	
Levsky et al. (2015)		000		200				28	Levsky et al. (2015)		200		200	- 12		0.60: 2	
		50		250	Ten		[0.59, 1.4		Dedic et al. (2016)		250		250	- m		0.70 2	
Dedic et al. (2016)					100		[0.86, 2.0		Nabi et al. (2016)		288		310	100		0.52, 3	
Nabi et al. (2016)	13 2	88	23	310		0.61	[0.31; 1.1		Hollander et al. (2016)		200		0.10	1	1,00	lo or or	0.0%
Hollander et al. (2016)	- 25	. e	42	200		7000000		0.0%	Uretsky et al. (2017)	45	206	2	205		7.46.1	1.73, 32.2	
Uretsky et al. (2017)	22 2	106	5	205		- 4.38	[1.69; 11.3		Chang et al. (2017)	10	200	~	200	18	7.40	1.10, 32.	0.0%
Chang et al. (2017)	100		0.00		E			0.0%		44	nos	- age	199	1	4 50	10.00 21	0.55555
Levsky et al. (2018)	23 2	01	18	199		1.27	[0.70; 2.2	7] 5.3%	Levsky et al. (2018)	11	201	100	199	1	1.50	[0.62, 3.9	
Goldman et al. (2020)								0.0%	Goldman et al. (2020)	200	400	20	400	14	0.70	m 17. 11	0.0%
Pineiro-Portela et al. (2021)	23 1	00	30	103		0.79	[0.49; 1.2	6.5%	Pineiro-Portela et al. (2021)		100		103			0.47; 1.2	
Aziz et al. (2022)	6 1	25	7	125		2.5.33.35.35	[0.30, 2.4		Aziz et al. (2022)		125		125			0.36; 2	-
Random effects model	35			059			[0.98; 1.4		Random effects model		3561	,	8029	0	1.45	1.09; 1.5	93] 64.9%
Heterogeneity: $I^2 = 41\%$, $\tau^2 = 0$			1.5	000		1.20	[0.50, 1.4	J 30.270	Heterogeneity: $I^2 = 3576$, $z^2 = 0$	0682, p =	0.11			1			
Risk for ACS = Group 2															20220		an secon
Chang et al. (2008)	47 1	33	57	133	lln to	200)/ ^	f NICT	EACS refer	· KO	』 4					0.58; 1.5	
Linde et al. (2013)		85		291	UD LO	JU	/o U	1 IVO I	EACS lelel	160	uц	.U			2.47	1.28, 4	
	49 2	.65	30	231										The state of the s			0.0%
Linde et al. (2015)	46	70	00	00	- ■ -	94	.			•		_		LB	0000000		0.0%
Smulders et al. (2019)		70	69	69	ac)n't	· na	Ve or	structive d	ISA	ลร	:		505	1.03	0.91, 1.	
Gray et al. (2021)	474 8	77	530	871	G	<i>_</i>	·	VC CR	oti aoti ve a	100	u			114			0.0%
Gray et al. (2022)	(E) 1000	mot a		S-1071										45	1.25	0.74; 2.	11] 35.1%
Random effects model		65	1	364	A 1 1 A	1400	NICTI	- 100 0	delines IACC 2044	04.00	120	220		118			
Heterogeneity: $I^2 = 81\%$, $\tau^2 = 0$.0593. p < 0.	01			AHA	ACC	11211	EACS GUI	delines. JACC 2014;	Z4:E	139-	-228		18			
														•	1.37	1.08; 1.7	74] 100.0%
Random effects model	49	56	4	423	F00	NOT		Out de line	F	. 07.0	007	045					
Heterogeneity: $I^2 = 68\%$, $\tau^2 = 0$	0821 p < 0	01		1	ESC	1/2/1	EACS	Guidelin	es. Eur Heart J 2015	, 37:2	<u> </u>	315		0.5 1 2 10			
Test for subgroup differences: y			0.001	0.1	0.5 1 2	-10								A. C.			

Initial Imaging-Guided Strategy Versus Routine Care in Patients With Non-ST-Segment Elevation Myocardial Infarction

90

80

70

60

50

40

30

20

10

0

Martijn W. Smulders, MD, ^{a,b} Bas L.J.H. Kietselaer, MD, PhD, ^{a,b,c} Joachim E. Wildberger, MD, PhD, ^{b,c} Pieter C. Dagnelie, PhD, ^{b,d} Hans-Peter Brunner-La Rocca, MD, ^{a,b} Alma M.A. Mingels, PhD, ^e Yvonne J.M. van Cauteren, MD, ^{a,b,c} Ralph A.L.J. Theunissen, MD, ^a Mark J. Post, MD, PhD, ^{b,f} Simon Schalla, MD, PhD, ^{a,b,c} Sander M.J. van Kuijk, PhD, ^e Marco Das, MD, PhD, ^{b,c,h} Raymond J. Kim, MD, Harry J.G.M. Crijns, MD, PhD, ^{a,b} Sebastiaan C.A.M. Bekkers, MD, PhD, ^{b,c,h} Raymond J. Kim, MD, ^{a,b} Sebastiaan C.A.M. Bekkers, MD, PhD, ^{a,b,c}

CARMENTA study

207 patients with acute chest pain, elevated hs/TnT and inconclusive ECG

Obstructive CAD on ICA

Am Heart J 2013 Dec;166(6):968-75

Normal

ACRIN-PA=

0% MACE in 640 patients with negative CTA

Obstructive

Non-obstructive

ROMICAT II subanalysis (CT arm):

22% patients with ACS had stenosis <50%

HRP independent predictor of ACS

(OR 8.9, 95% CI 1.8-43.3, p=0.006) after adjusting for <u>% stenosis</u>, age, gender, and risk factors

Puchner SB, et al. J Am Coll Cardiol. 2014 Aug 19;64(7):684-92

ORIGINAL RESEARCH

EMERALD study (ACS with previous CT)

Identification of High-Risk Plaques **Destined to Cause Acute Coronary** Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics

Joo Myung Lee, MD, MPH, PuD,44 Gilwoo Choi, PuD,44 Bon-Kwon Koo, MD, PuD,44 Doyeon Hwang, MD,4 Jonghanne Park, MD, PsD," Bnlong Zhang, MD," Kyung-Jin Kim, MD," Yallang Tong, MD," Hyun Jin Kim, PsD," Leo Grady, PuD," Joon-Hyung Doh, MD, PuD," Chang-Wook Nam, MD, PuD," Eun-Seok Shin, MD, PuD,"

Prior CT 1-24 months

FFR., (-): 3.97

Culprit vs. non-culprit

Cumulative Risk for Culprit Lesion on ACS

	Nonculprit Lesion (n = 150)	Culprit Lesion (n = 66)	p Value
Vessel location			0.001
LAD	48 (32.0)	39 (59.1)	
LCX	39 (26.0)	9 (13.6)	
RCA	63 (42.0)	18 (27.3)	
Lesion location			0.193
Proximal	62 (41.3)	36 (54.5)	
Mid	61 (40.7)	20 (30.3)	
Distal	27 (18.0)	10 (15.2)	
Anatomical severity			
Lesion length, mm	12.1 ± 7.4	15.8 ± 8.4	0.002
MLA, mm ²	3.02 ± 1.58	2.11 ± 1.43	< 0.001
Diameter stenosis, %	43.1 ± 15.0	55.5 ± 15.4	< 0.001
Distance from ostium, mm	47.8 ± 20.4	45.5 ± 27.2	0.489
Adverse plaque characteristics			
Low-plaque density	43 (28.7)	41 (62.1)	< 0.001
Positive remodeling	16 (10.7)	23 (34.8)	< 0.001
Napkin-ring sign	13 (8.7)	22 (33.3)	< 0.001
Spotty calcification	31 (20.7)	28 (42.4)	0.001
Any adverse plaque characteristics*	63 (42.0)	53 (80.3)	< 0.001
Hemodynamic parameters			
FFR _{CT}	0.79 ± 0.14	0.72 ± 0.17	0.006
ΔFFR _{CT}	0.06 ± 0.07	0.17 ± 0.17	< 0.001
Wall shear stress, dyn/cm ²	145.5 ± 87.6	221.8 ± 113.2	< 0.001
Axial plaque stress, dyn/cm ²	1,734.7 ± 1,896.8	2,585.9 ± 2,401.3	0.006

Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study

Kenmeth Chan*, Elizabeth Wahome*, Apostolos Tsiachristas, Alexios S Antonopoulos, Parijat Patel, Maria Lyusheva, Lucy Kingham, Henry West, Evangelos K Oikonomou, Luczezia Volpe, Michail C Mawrogiannis, Edward Nicol, Tarun K Mittal, Thomas Halborg, Rafail A Kotronias, David Adlam, Bhavik Modi, Jonathan Rodrigues, Nichalas Screaton, Attila Kardos, John P Greenwood, Nikant Sahharwal, Giovanni Luigi De Maria, Shahrad Munir, Elisa McAlindon, Yogesh Sahan, Pete Tornlins, Muhammad Siddique, Andrew Kelian, Cheerag Shirodaria, Francesca Pugliese, Steffen E Petersen, Ron Blankstein, Millind Desai, Bernard J Gersh, Stephan Achenbach, Peter Libby, Stefan Neubauer, Keith M Channon, John Deanfield, Charakambos Antoniades, on behalf of the ORFAN Consortium

Lancet 2024; 403: 2606-18

Cohort A=

40 091 patients with median FUP 2.7 years

Cohort B=

3393 patients with median FUP 7.7 years

Participants without obstructive CAD

- 3 inflamed vessels, HR (95%) 8-9 (5-80-13-80), p<0-001
- 2 inflamed vessels, HR (95%) 5.4 (3.31–8.65), p<0.001</p>
- 1 inflamed vessels, HR (95%) 5.6 (3.50-8.83), p<0.001
- 0 inflamed vessels: Reference

66% of MACE and 63% of deaths occurred in patients with non-obstructive CAD

FAI Score in any vessel predicted cardiac mortality and MACE independently from risk factors and the presence or extent of CAD

Participants without obstructive CAD

- 3 inflamed vessels, HR (95%) 18-5 (7-91-43-7), p<0-001</p>
- 2 inflamed vessels, HR (95%) 12-9 (5-25–31-5), p<0-001</p>
- 1 inflamed vessels, HR (95%) 10·2 (4·16–25·2), p<0·001

MINOCA (5-15% of AMI referred to ICA)

Circulation

ORIGINAL RESEARCH ARTICLE

0

Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Bainey KR. COAPT study. Int J Cardiol. 2018;264:12–17 Lindahl B. Circulation. 2017;135:1481–1489. Smilowitz NR. Am Heart J. 2011;161:681–688

116 women with MINOCA + 3V OCT + MRI

Nonobstructive Coronary Arteries in Women

Combined OCT and MRI findings:

- Final diagnosis of MI, 64%
- Myocarditis, 15%
- Takotsubo 3%
- Non-ischemic CM 3%
- Unknown mechanism (16%)

	Normal ICA					
Sites (n=16):	53%					
Core lab:	3%					

55 year-old male. Smoker. Dyslipidemia

Acute chest pain with abnormal ECG (infra ST 0.5 mm DII, DIII y AvF) and enzyme elevation

Invasive angiogram (05/05/24):

MINOCA

Echocardiogram (08/05/24):

LVEF 64%, without wall motion abnormalities

MINOCA

Cardiac MR to define etiology (40 days later)

CMR-RCA infarct

CMR: Amyloidosis

CMR: Distal LAD infarct

CMR: Myocarditis

CTCA:

Coronary

Early Assessment of Myocardial Viability by the Use of Delayed Enhancement Computed Tomography After Primary Percutaneous Coronary Intervention

Gastón A. Rodriguez-Granillo, MD, PtD,*§ Miguel A. Rosales, MD,* Santiago Baum, MD,†
Paola Rennes, MD,† Carlos Rodriguez-Pagani, MD,† Valeria Curotto, MD,†
Carlos Fernandez-Pereira, MD,‡ Claudio Llaurado, BSc,‡ Gustavo Risau, MD,‡
Elina Degrossi, MD,* Hernán C. Doval, MD, PtD,† Alfredo E. Rodriguez, MD, PtD*‡
Buenos Aires, Argentina

Microvascular reperfusion failure, poor ST resolution, higher enzyme levels, higher in-hospital complication rates, and lower functional recovery at 6 months

Role in STEMI:

Early Assessment of Myocardial Viability

Early myocardial tissue changes related to AMI with Non-contrast CT

Electron density enabled the identification in 11/15 (73%) affected coronary territories

Rodriguez-Granillo GA. J Thorac Imaging. 2024 May 1;39(3):173-177

Gracias!! Thank you!!

grodriguezgranillo@gmail.com

