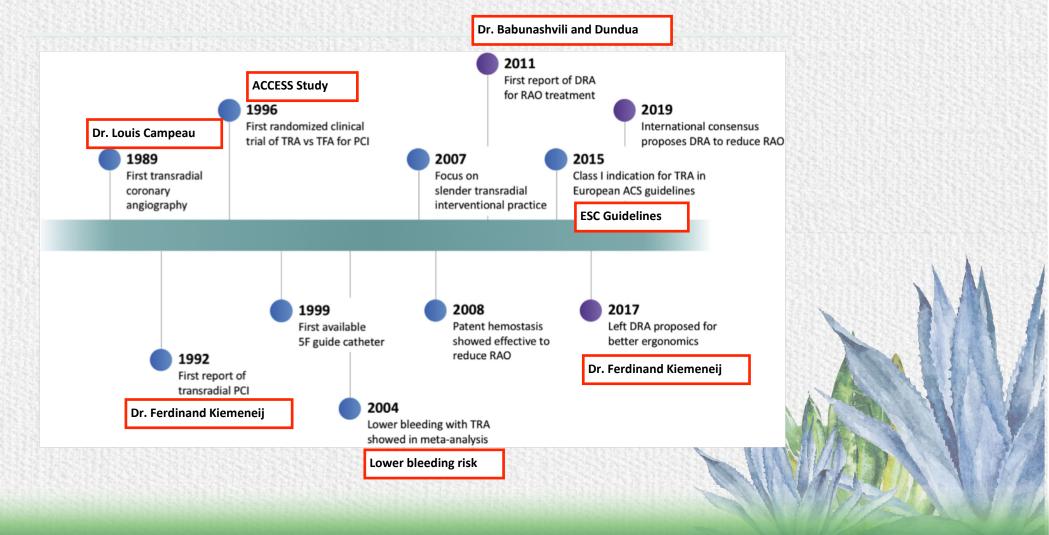


Radial (Proximal & Distal) and Cubital access When and How? Tips to avoid complicatios

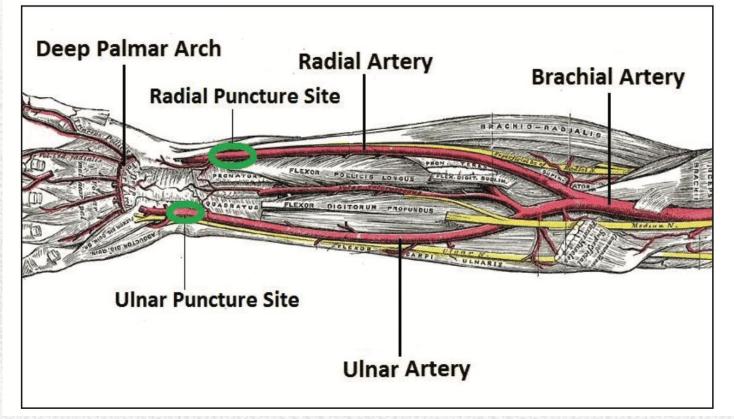
Dr. Sebastián Lluberas
Interventional Cardiologist

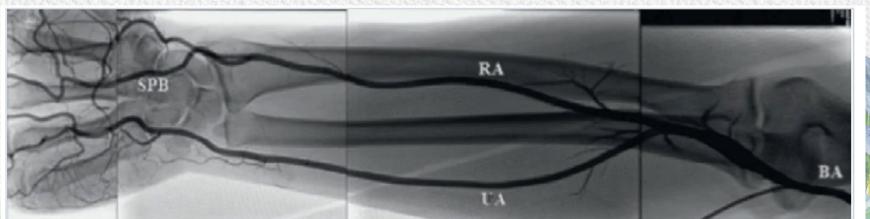
Cardiocentro - Asociación Española INCI - Círculo Católico

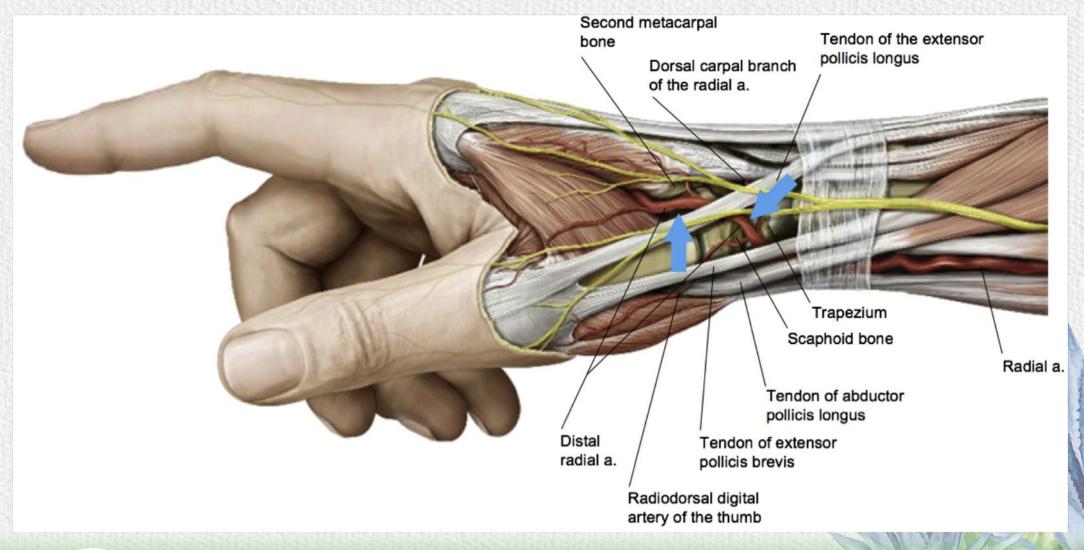
Introduction:

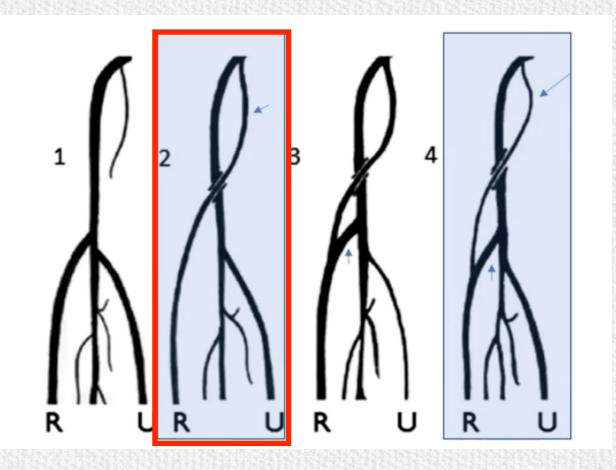

- The radial artery has become the default access site for coronary angiography and intervention
- European and American guidelines endorse a "radial first" strategy
 (Class of Recommendation I, Level of Evidence A), whenever feasible
 and regardless of clinical presentation, to be performed by proficient
 operators
- The use of the radial artery, compared with the femoral artery, is associated with lower risks of mortality, major adverse cardiovascular events, access site related major bleeding and vascular complications
- Is preferred to femoral access by the majority of patients; it allows immediate mobilization, favours same-day discharge and is, therefore, a cost-saving intervention compared with femoral access

Milestones in Transradial Interventional Practice


- 1. Anatomy of radial artery and arterial system of the hand
- 2. Proximal, distal, cubital
- 3. Radial access step by step
- 4. Complexities and complications
- 5. Scientific evidence in support of radial access







- Type 1, 3 and 4: Radial access feasible
- Type 2: High branching radial artery (arising from axilar artery): Not feasible

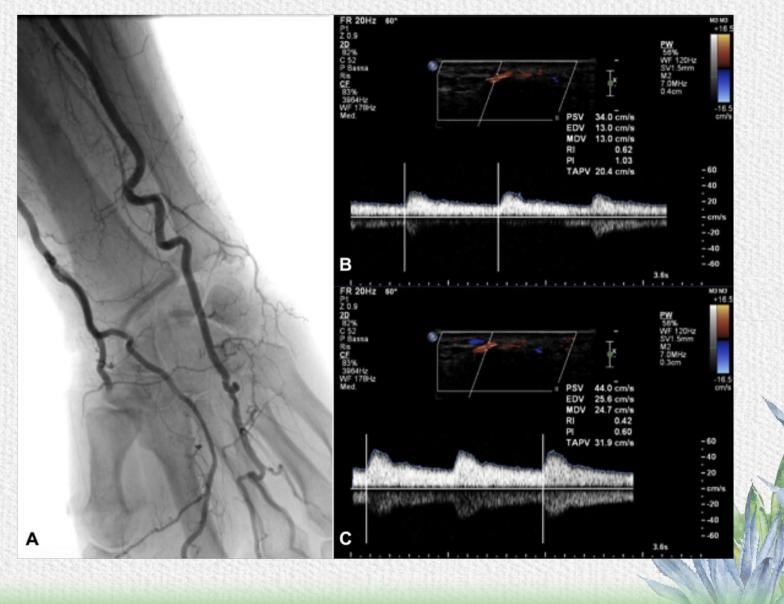
Proximal, distal, cubital

1. Distal radial & ulnar access:

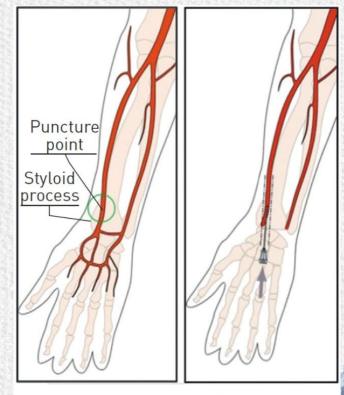
- 1. When radial artery occlusion risk reduction is a priority
- 2. Need to preserve proximal radial artery for future procedures, dialysis fistulas or CABG

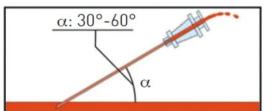
2. Ulnar access:

- 1. Radial known anatomic issues (small diameter, radial stenosis with calcification, tortuosity, small pulse)
- 2. Deeper, close to the homonymous nerve and an effective compression surface is lacking


3. Distal radial:

- 1. LdRA: left hand close to the right groin in such a way that is **comfortable** for both the patient and the operator
- 2. Alternative puncture site when spasm occurs because of failed p-TRA punctures



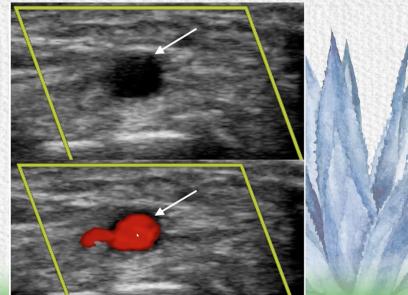


Radial Step by Step

- 1. Palpation of radial pulse
- 2. Sterile preparation
- 3. US guidance (if needed)
- 4. Local anesthetic
- 5. Radial artery puncture
- 6. 0.018 inch guidewire insertion
- 7. Skin nick (if needed)
- 8. Sheath insertion + aspiration/flushing
- 9. Securing the sheath (if needed)

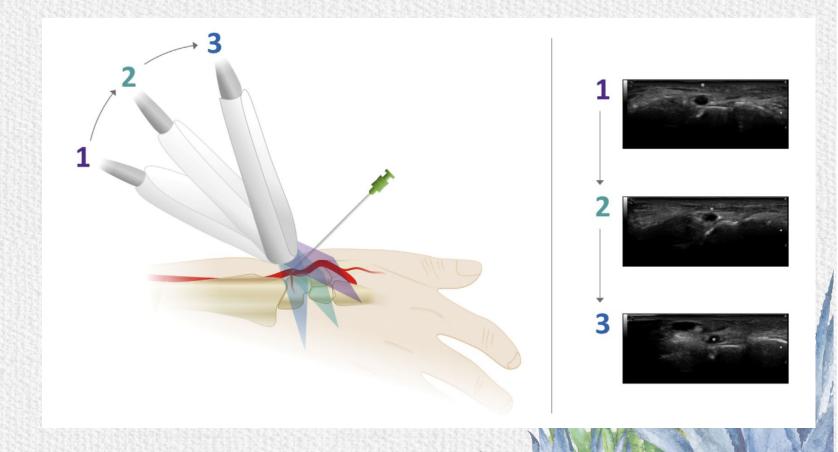

- p-TRA & ulnar access:
 - Patient supine
 - Wrist extended

- Right: neutral position with its lateral side facing superiorly
- Left: at patient's groin or left arm at 90*



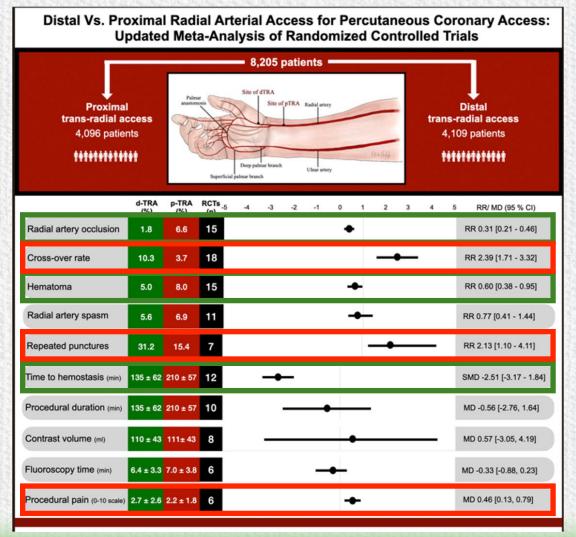
When to use US

- Weak or non-palpable pulse
- Key Benefits of Using US:
 - Real time visualization
 - Confirms artery vs. vein
 - Confirms patency (color Doppler)
 - Reduces risk of posterior wall puncture
 - It's helpful for teaching (demostrate anatomy and needle tip control)
- Improves first puncture success, reduces time to access and vascular adverse events



When to use US

- US in d-TRA:
 - Improves puncture success from 87% to 97%



Meta-analysis of RCT p-TRA vs d-TRA

Front wall stick

Double wall "through and through" stick

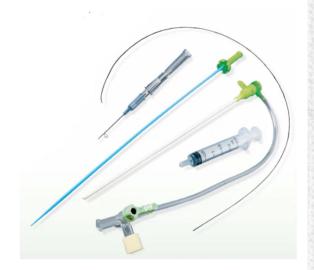
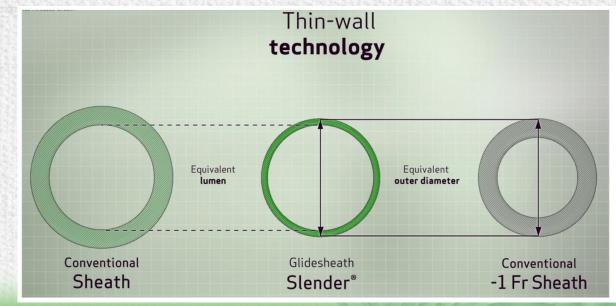
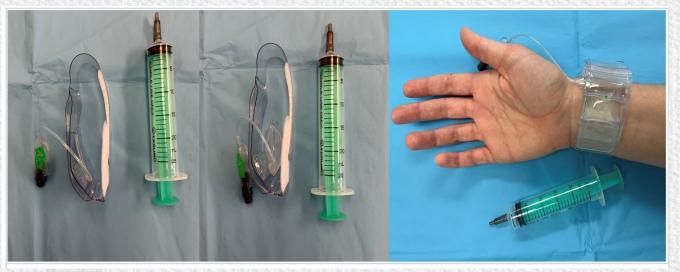
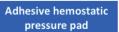
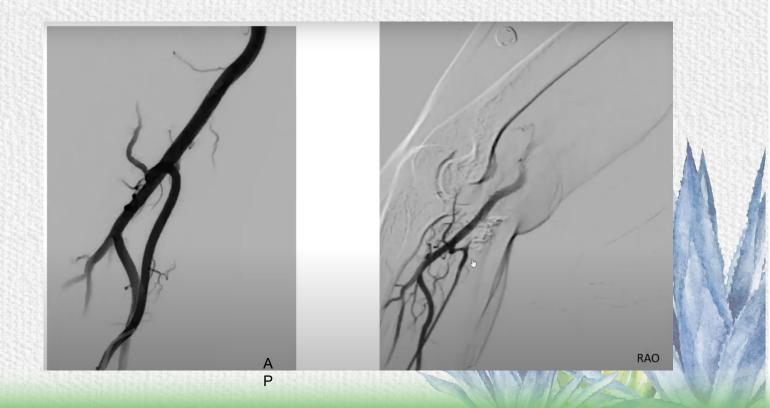



Table 1: Sheath Size by Radial Artery Diameter

Introducer Sheath	Ideal Radial Artery Diameter (mm)
5 Fr slender radial	1.6
5 Fr regular radial	1.8
6 Fr slender radial	2.4
6 Fr regular radial	2.6
7 Fr regular radial	3.1



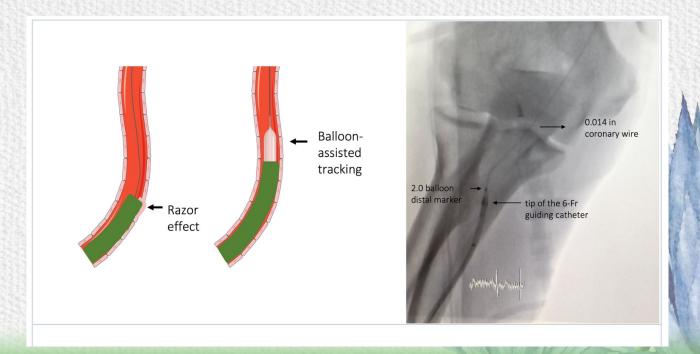




Complexities and complications

- When soft J wire does not advance:
 - Try Roadrunner angled wire or Wholey Floppy wire under fluoro
 - Give NTG/Verapamil if radial artery spasm

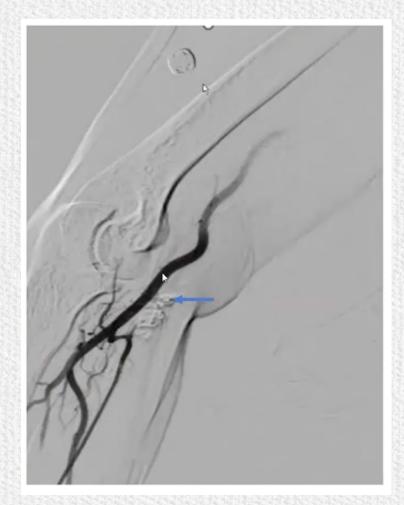
- Substraction angio with sheath:
 - Watch for loop, accessory small radial branches but also for perforation
- Try Roadrunner angled wire under fluoro


Radial Loops Techniques

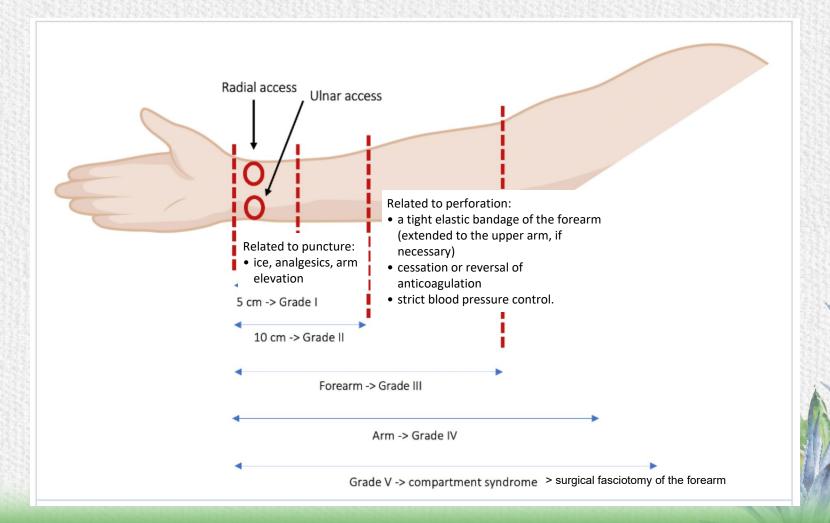
• 0.014 - 0.018 wire technique:

- Try 0.014 (BMW, Whisper) or 0.18 wire to advance though the loop
- Advance the softest 4-5 Fr catheter
- Exchange the 0.014 or 0.018 wire to 0.035 J wire (low or medium weight)
- Advance 6 Fr catheter

• BAT (balloon assisted tracking):

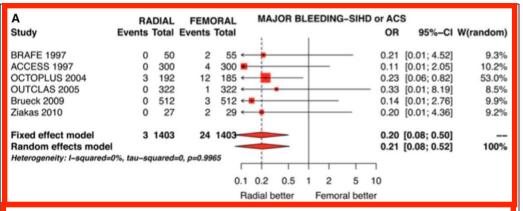

- When 0.035 crosses the loop but not the catheter
- Wire with a 0.014 and do BAT with 1.5 or 2.0 x 15 coronary balloon (keeps the catheter tip tapered and coaxial)

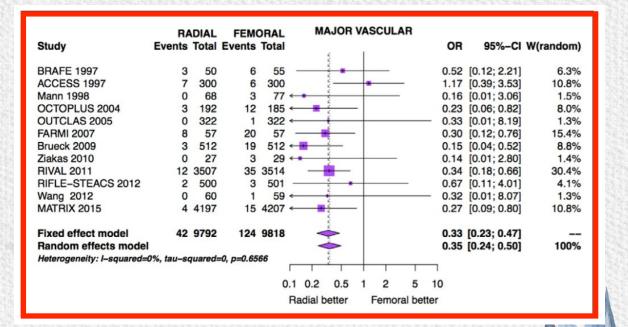
Perforation


- Even if perforation happens, continue with attempts of trying to cross properly (the catheter itself will occlude flow across the small accessory branch)
- If big perforation: Inflate BP cuff for 10 minutes before reattempting to cross
- Repeat angiogram to verify that the perforation is sealed at the end of the procedure
 - If persists:
 - Radvance guiding catheter for 20 minutes
 - Inflate 2.5 mm balloon for 20 minutes
 - Elastic bandage

EASY (EArly Discharge After Transradial Stenting of coronary arteries) classification of the upper limb haematoma

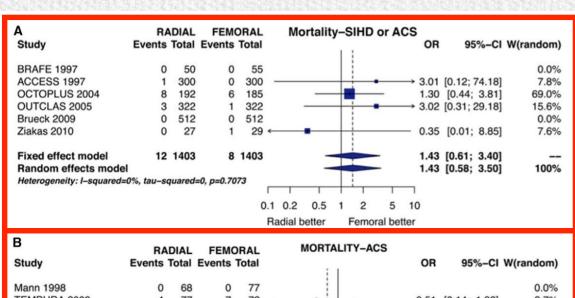
A practical algorithm for challenging anatomical situations





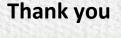
Evidence

В	R/	DIAL	FEM	ORAL	MA	JOR E	BLE	EDING-	-ACS	6		
Study			Events							OR	95%-CI	W(random)
Mann 1998	0	68	3	77 4			4			0.16	[0.01; 3.06]	0.6%
TEMPURA 2003	0	77	2	72 4			+				[0.01; 3.85]	0.6%
RADIAL-AMI Pilot 2005	0	25	0	25		ě						0.0%
FARMI 2007	3	57	3	57	_		+		_	1.00	[0.19; 5.18]	2.1%
Achenbach 2008	0	152	3	155 ◀	•		+			0.14	[0.01; 2.79]	0.6%
RADIAMI 2009	3	50	7	50 4		• 6	+	_		0.39	[0.10; 1.61]	2.8%
RADIAMI II 2011	4	49	6	59	_	- 1	•			0.79	[0.21; 2.96]	3.2%
RIVAL 2011	24	3507	33	3514			•			0.73	[0.43; 1.23]	17.6%
RIFLE-STEAC 2012	39	500	61	501		-	-			0.61	[0.40; 0.93]	25.5%
Wang 2012	0	60	3	59 <	•		+			0.13	[0.01; 2.64]	0.6%
STEMI-RADIAL 2014	5	348	26	359 4		:				0.19	[0.07; 0.49]	5.8%
OCEAN RACE 2014	3	52	2	51	-	- :	-	•		- 1.50	[0.24; 9.37]	1.7%
MATRIX 2015	64	4197	95	4207		-	-			0.67	[0.49; 0.92]	38.7%
Fixed effect model	145	9142	244	9186		4	.			0.59	[0.48; 0.73]	
Random effects model						-					[0.47; 0.76]	100%
Heterogeneity: I-squared=6.1%, tau-squared=0.0118, p=0.3855												
				Γ		П,		1	1			
				0.	1 0.2	0.5	1	2	5	10		
Radial better Femoral better										ter		



Evidence

В	RADIA	FEMORAL	MORTALITY-ACS							
Study		l Events Total		OR	95%-CI	W(random)				
Mann 1998	0 6	3 0 77	1			0.0%				
TEMPURA 2003	4 7	T		0.51 [0	0.14; 1.82]	2.7%				
RADIAL-AMI Pilot 2005										
	7.				0.01; 8.25]	0.4%				
FARMI 2007	3 5			1.00 [0	0.19; 5.18]	1.6%				
Achenbach 2008	0 15		11			0.0%				
RADIAMI 2009	1 5		· i i	\rightarrow 1.00 [0	.06; 16.44]	0.6%				
RADIAMI II 2011	0 4	9 0 59	1			0.0%				
RIVAL 2011	44 350	7 51 3514		0.86 [0	0.57; 1.29]	26.5%				
RIFLE-STEAC 2012	26 50	46 501		0.54 [0	0.33; 0.89]	17.6%				
Wang 2012	0 6	1 59 4		- 0.32 [0	0.01; 8.07]	0.4%				
STEMI-RADIAL 2014	8 34	3 11 359	-		0.30; 1.87]	5.1%				
OCEAN RACE 2014	4 5	2 5 51			0.19; 3.03]	2.3%				
MATRIX 2015	66 419		-		0.52; 0.99]	42.7%				
	00 110	0	T	0	,,					
Fixed effect model	156 914	2 217 9186	•	0.71 [0	0.58; 0.88]					
Random effects model			*		0.58; 0.88]	100%				
Heterogeneity: I-squared=0%, tau-squared=0, p=0.9649										
genenji i oquarea-e	, .uu oquuro	Γ	1 1 1							
		0.	1 0.2 0.5 1 2 5	10						
Radial better Femoral better										



TAKE HOME MESSAGES

- A radial-first approach is strongly recommended in all patients
 - lower risks of mortality in ACS patients
 - lower risk major bleeding and vascular complications
 - preferred by the majority of patients
- d-TRA: to preserve proximal radial artery for future procedures
- Ulnar: effective in small radial pulse
- Ultrasound guidance facilitates radial vascular access

