

A 2x2 Randomized Trial of Self-Expandable vs Balloon-Expandable Valves and General vs Local Anesthesia in Patients Undergoing Transcatheter Aortic Valve Implantation

Holger Thiele, MD

on behalf of the SOLVE-TAVI Investigators

Disclosure Statement of Financial Interest SOLVE-TAV

I, Holger Thiele DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Background I

- TAVR is developing as standard strategy for symptomatic patients with severe aortic stenosis at high to intermediate risk.
- TAVR device design led to relevant technical and clinical improvements (e.g. pacemaker rates, paravalvular leakage, vascular complications).
- There is limited evidence for direct valve comparisons (CHOICE, REPRISE III) in particular for latest generation valve designs.

Abdel-Wahab et al. JAMA 2014;311:1503-1514

Feldman et al. JAMA. 2018;319:27-37

Background II – Anesthesia Strategy

- In clinical routine TAVR is performed in ≈50% using general or local anesthesia with conscious sedation.
- Registry data suggest
 - a) lower mortality
 - b) lower morbidity
 - c) shorter ICU and hospital stay
 - d) shorter procedure times with local anesthesia.
- There is a lack of adequately powered randomized trials.

SOLVE-TAVI Program

Hypotheses

I) Self-expanding CoreValve Evolut R is equivalent to balloon-expandable Sapien 3 (Edwards) valve

II) Local anesthesia with conscious sedation is equivalent to general anesthesia

in symptomatic aortic stenosis patients undergoing transfemoral TAVR.

SOLVE-TAVI Trial

Investigator-initiated German multicenter trial; 1:1 randomization

2018

PI: Holger Thiele

Study Coordination: Suzanne de Waha-Thiele

University Heart Center Lübeck: Thomas Kurz, Roza Meyer-Saraei Ingo Eitel, Matthias Heringlake Klinikum Links der Weser Bremen: Rainer Hambrecht, Harm Wienbergen **Heart Center Leipzig:** Hans-Josef Feistritzer, Steffen Desch Marcus Sandri, Mohamed Abdel-Wahab David Holzhey, Michael Borger Yvonne Rückert, Jörg Ender **University of Giessen:** Holger Nef, Oliver Dörr **Charité Berlin:** Alexander Lauten, Sascha Treskatsch University of Rostock: Hüseyin Ince, Mohamed Sherif University Schleswig-Holstein, Campus Kiel: Norbert Frey, Derk Frank

Funding:

CROs:

Study Flow Chart - Valve Strategy

Baseline Characteristics – Valve Strategy SOLVE-TAV

Characteristic	Evolut R	Sapien 3
	(n=219)	(n=219)
Age (years); mean ±SD	81.7 ± 5.3	81.5 ± 5.7
Male sex; n/total (%)	105/219 (47.9)	109/219 (49.8)
Risk scores		
STS score (%); mean ±SD	7.7 ± 7.2	7.6 ± 7.4
Log. EuroScore I (%), mean ±SD	18.4 ± 12.1	18.3 ± 13.1
EuroScore II (%), mean ±SD	6.1 ± 5.5	5.4 ± 4.9
Frailty; n/total (%)	93/216 (43.1)	80/217 (36.9)
Peripheral arterial disease; n/total (%)	28/219 (12.8)	27/219 (12.3)
Prior myocardial infarction; n/total (%)	19/219 (8.7)	22/219 (10.1)
Prior PCI; n/total (%)	84/219 (38.4)	79/219 (36.1)
Prior CABG; n/total (%)	26/219 (11.9)	18/219 (8.2)
Atrial fibrillation; n/total (%)	103/219 (47.0)	93/219 (42.5)
Pacemaker/ICD; n/total (%)	24/218 (11.0)	23/219 (10.5)
Prior stroke; n/total (%)	25/219 (11.4)	26/218 (11.9)
Renal insufficiency; n/total (%)	177/216 (81.9)	184/214 (86.0)
Pulmonary hypertension; n/total (%)	106/216 (49.1)	105/218 (48.2)
COPD; n/total (%)	30/219 (13.7)	29/217 (13.4)
Cardiovascular risk factors		
Diabetes; n/total (%)	79/218 (36.2)	68/219 (31.1)
Arterial hypertension; n/total (%)	193/219 (88.1)	204/219 (93.2)
HLP; n/total (%)	118/218 (54.1)	80/217 (36.9)
Current smoking; n/total (%)	8/218 (3.7)	10/219 (4.6)

Primary Endpoint – Valve Strategy

SOLVE-TAV

All-cause mortality, stroke, moderate or severe prosthetic valve regurgitation, permanent pacemaker implantation at 30 days

Endpoints – Valve Strategy

Individual components primary endpoint

esearch Foundation

Study Flow Chart - Anesthesia Strategy

Baseline Characteristics – Anesthesia Strategy SOLVE-TAV

Characteristic	Local Anesthesia	General Anesthesia
	(n=218)	(n=220)
Age (years); mean ±SD	81.8 ± 5.3	81.4 ± 5.7
Male sex: n/total (%)	107/218 (49.1)	107/220 (48.6)
Risk scores		
STS score (%); mean ±SD	6.9 ± 6.2	8.3 ± 8.2
Log. EuroScore I (%), mean ±SD	17.8 ± 12.6	18.9 ± 12.5
EuroScore II (%), mean ±SD	5.5 ± 4.8	6.0 ± 5.6
Frailty; n/total (%)	91/214 (42.5)	82/219 (37.4)
Peripheral arterial disease; n/total (%)	29/218 (13.3)	26/220 (11.8)
Prior myocardial infarction; n/total (%)	24/218 (11.0)	17/220 (7.7)
Prior PCI; n/total (%)	92/218 (42.2)	71/220 (32.3)
Prior CABG: n/total (%)	22/218 (10.1)	22/220 (10.0)
Atrial fibrillation; n/total (%)	98/218 (45.0)	98/220 (44.6)
Pacemaker/ICD; n/total (%)	13/218 (6.0)	20/220 (9.1)
Prior stroke; n/total (%)	24/217 (11.1)	27/220 (12.3)
Renal insufficiency; n/total (%)	179/213 (84.0)	182/217 (83.9)
Pulmonary hypertension; n/total (%)	100/216 (46.3)	111/218 (50.9)
COPD; n/total (%)	27/216 (12.5)	32/220 (14.6)
Cardiovascular risk factors		
Diabetes; n/total (%)	70/218 (32.1)	77/219 (35.2)
Arterial hypertension; n/total (%)	199/218 (91.3)	198/220 (90.0)
HLP; n/total (%)	92/216 (42.6)	88/219 (40.2)
Current smoking; n/total (%)	9/218 (4.1)	9/219 (4.1)

Primary Endpoint – Anesthesia Strategy SOLVE-TAV

All-cause mortality, stroke, myocardial infarction, infection requiring antibiotic treatment, acute kidney injury at 30 days

Endpoints – Anesthesia Strategy

Individual components primary endpoint

Summary and Conclusions I

- In patients with symptomatic aortic stenosis undergoing transfemoral TAVR the self-expanding Corevalve Evolut R valve is equivalent to the balloon-expandable Edwards Sapien 3 with respect to the composite of all-cause mortality, stroke, moderate or severe prosthetic valve regurgitation, and permanent pacemaker implantation at 30 days.
- The rate of relevant valve regurgitation was low whereas permanent pacemaker rates are still relatively high.
- There may be a higher stroke rate with the balloon-expandable valve.

Summary and Conclusions II SOLVE-TA

- Local anesthesia with conscious sedation is equivalent to general anesthesia with respect to the composite of all-cause mortality, stroke, myocardial infarction, infection requiring antibiotic treatment, and acute kidney injury.
- General anesthesia is associated with a higher rate of catecholamine use but does not affect procedure times, valverelated outcome, or clinical outcome.

Acknowledgement and Thank You SOLVE-TAVI Patients and Investigators

Steering Committee

Holger Thiele, MD (Chair) Steffen Desch, MD Suzanne de Waha-Thiele, MD Thomas Kurz, MD Holger Nef, MD Rainer Hambrecht, MD Norbert Frey, MD Alexander Lauten, MD Hüseyin Ince, MD Michael Borger, MD David Holzhey, MD Matthias Heringlake, MD Jörg Ender, MD

DSMB

Gerhard Schuler, MD Steffen Schneider, PhD Bernd Böttiger, MD

Funding

German Heart Research Foundation

Echo Core lab

<u>Heart Center Leipzig:</u> Georg Stachel, MD Suzanne de Waha-Thiele, MD

CRO

Leipzig Heart Institute: Yvonne Rückert Anne-Kathrin Funkat, PhD Ina Wagner

IMBS Lübeck Inke König, PhD Reinhard Vonthein, PhD Jördis Stolpmann

ZKS Lübeck: Arne Schreiber, PhD Alicia Illen

