

EVAR-TAVR in Patients with Hostile Anatomies

Oscar A. Mendiz.MD. FACC. FSCAI

Chairman Interventional Cardiology
Hospital & Favaloro University Board
SOLACI Past-President
Associated Director of TCT
SCAI Board of Thrustees

Disclosure

Nombre: Oscar A. Mendiz

- ☐ Consultant: Medtronic, Astra Zeneca.
- ☐ Meeting Sponsorship; Cook, Endologix

EVAR-TEVAR Limitations

- Long term EVAR-TEVAR success depends highly upon the <u>proximal aortic neck</u> for effective "seal" at this point to exclude the aneurysms, without Type I endoleak, and device fixation to avoid migration.
- Distal fixation zone is also important for these issues.
- The following are anatomic limitation for successful procedures:
 - Short neck (<15mm, abdominal < 20 Thoracic)
 - Neck angulations > 40°
 - Presence of mural thrombus in the neck
 - Tapering or reverse tapering
 - Both iliac compromise.
 - Thoracoabdominal aneurysms
 - Juxtarenal aneurysms

Limitation for TEVAR

Short Neck, Left subclavian artery compromise. The most common.

Type B Aortic Dissection: Left Subclavian coverage

Aortic Dissection Compromising the Aortic Arch: Hybrid Approach

Author	Year	Nº Ptes	30-day Mortality	1-year Survival	Stroke
Bergeron	2006	25	8%	88%	8%
Melissano	2007	37	11%	86	5.4%
Czerny	2007	27	7.4%	83%	0
Bockler	2010	40	7.5%	87.5%	2.5%
Total		129	10%	85%	3%

Outcomes	n=24	
In-hospital Mortality	4.2%	
False Lumen Thrombosis	95.6%	
Survival @ 28 months	92.1±8%	

FUNDACIÓN FAVALORO

Combined Approach: Surgical Debranching

Endovascular Options: Chimney

Planned treatment: iliac extension graft stent to allow left subclavian artery patency .Endoprothesis in arch and discending aorta

Endovascular procedure: 13mm x 7.5 cm iliac extension in subclavian artery and 38mm x20 cm tubular segment in arch and toracic aorta

Chimney Technique

Aortic Arch Chimney (Endovascular Debranching)

Hybrid

Aortic Arch Chimney (Endovascular Debranching)

Stent Graft Inside a Previous "Elephant Trump"

Thoraco-Abdominal Aneurysms

Thoraco-Abdominal Aneurysms

TEVAR for Thoraco -abdominal Aneurysms: Abdominal Surgical Debranching

Thoracoabdominal aneurysm

Previous surgical AAA repair

Images courtesy of Dr John Anderson

(tctmd.com)

FUNDACIÓN
FAVALORO

UNIVERSIDAD
FAVALORO

Dr John Anderson (modified)

Fenestrated Endografts: Mortality

Metanalysis: 11 Studies 660 procedures 30-day mortality 2.0%

Fenestrated Endografts: Endoleaks

Target Vessels Patency

Toraco-Abdomnial Aneurysm: Snorkel or Periscope Technique

Endovascular Repair of AAA: Anatomic Indications

Case Selection for EVAR: Types of AAA

Endoluminal

Endoluminal

Iliac Aneurysms

Iliac Aneurysms

Bilateral Iliac Aneurysms: Hybrid Approach

Both Iliac Compromise: Bifurcated Branches

Bilateral Iliac Aneurysms: Bifurcated Branches

Bilateral Iliac Aneurysms: Bifurcated Iliac Branch & Contralateral Plug Embolization

Preprocedure

Bilateral Iliac Aneurysms:

Bifurcated Iliac Branch & Contralateral Plug Embolization

Long-term Results of Iliac Aneurysm Repair with Iliac Branched Endograft: 5-Year Experience on 100 Consecutive Cases

100 consecutive patients between 2006 and 2011.

	%
Periprocedural Technical Success	95
Mortality	-
Patency of Internal Iliac branch (5 years)	91.4
Freedom from any Reinternvention (1 year)	90

Endovascular treatment of iliac aneurysm: Concurrent comparison of Side Branch Endograft vs. Hypogastric Exclusion

74 patients. 32 receiving side branch endograft and 42 with hypogastric exclusion.

No intestinal ischemia or deaths occurred.

There were no significant differences in failures of hypogastric side branch deployment (2/32) compared with hypogastric coiling (3/42).

Reintervention rates were similar (5/32 vs. 4/42) at oneyear.

Buttock claudication & erectil disfunction were more frequent after hypogastric exclusion.

Isolated Iliac Aneurysm Without Proximal Neck: "Sandwich Technique"

Juxtarenal and hostile Neck AAA

European Journal of Vascular and Endovascular Surgery 44 (2012) 556-561

Hallet et al: Comprehensive Vascular and Endovascular Surgery, 2004

Hostile Neck for AAA

Definition: one or more of the following anatomical features.

- Diameter >28 mm
- Angulation >60
- Length <15 mm
- Thrombus
- Flare

Juxtarenal pseudoaneuryms: Fenestrated Graft

Balloon expandable stent

Scallops

Fenestrated Graft

Postprocedure

Preprocedure

Fenestrated Endovascular Grafting: The French Multicentre Experience

134 patients from 16 French centers Between 2004 & 2009.

30-day mortality rate 2%

Conversion to open surgery 1%

A total of 12 procedure-related reinterventions were performed during the follow up of 15 months.

Cardiovascular Surgery

Early Results of Fenestrated Endovascular Repair of Juxtarenal Aortic Aneurysms in the United Kingdom

318 Ptes. from 14 centers (2007-2012)

Early Results of Fenestrated Endovascular Repair of Juxtarenal Aortic Aneurysms in the United Kingdom

On behalf of the British Society for Endovascular Therapy and the Global Collaborators on Advanced Stent-Graft Techniques for Aneurysm Repair (GLOBALSTAR) Registry

1-year Freedom from Reintervention 90%

This could be the final result of the absence of neck

if you have the money to pay, the skills to implant the device and the time to wait for the prosthesis

EVAR in Short Neck AAA: Chimney Technique

If you have no money or time, there is the chimney technique

The chimney graft technique for preserving visceral vessels during endovascular treatment of aortic pathologies

	n=93 Ptes (%)
Urgent Procedures (symptomatic or ruptured)	23 (24)
Primary Technical Success	93 (100)
Type I Endoloeak	10 (10.7)
30-day Mortality	4 (4.3)

This could be a cheaper and faster final result of the absence of neck

But remember that you still need skillsin

Renal Stent Graft Disconnection;

Renal Stent Graft Disconnection:

Stent graft re-connection

Renal Stent Graft Disconnection:

Stent graft re-connection

Importance of Oversizing

Chimney Drawback: 1-year Stent Occlusion

Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift?

2750 patients with juxtarenal aneurysms from 25 studies between 2001 & 2012

	Open Surgery (n=1725)	f-EVAR (n=931)	Chimney-EVAR (n=94)	Р
30-day Mortality (%)	5.3	3.4	2.4	ns
Target Vessel Preservation (%)		98.6	98	ns
Type I Endoleak (%)	NA	4.3*	10*	0.002
Stroke (%)	0.1*	0.3	3.2*	<0.001
New Onset Dialysis (%)	3.9*	1.5*	2.1	<0.0001

EVAR for AAA in Ptes with Hostile Neck Anatomy

Special / Additional procedure intra index procedure	FAVOURABLE NECK (n=296) (69.5%)	HOSTILE NECK (n=139) (30.5%)	þ
Unplanned Balloon Expandable Stent, Aortic Cuff or Stent Graft	25 (8.4%)	35 (25.1%)	<0.0001
Chimney technicque for both renal arteries	0	9 (6.5%)	<0.0001
Chimney technicque for the lower renal artery	0	2 (1.5%)	0.19
Fenestrated EVAR	0	3 (2.3%)	0.064
Total	25 (8.4%)	49 (35.2%)	<0.0001

35% of Ptes with Hostile Neck required additional o dedicated procedures/devices

Chimney: Pros

PROS:

- Great for bail-out & rescue
- Availability (time)
- Suitable for most cases
- Cost advantage??
- Better than expected

CONS:

- Sealing (type I endoleak ~10%)
- Still Complex
- Mechanical problems (stent collapse)
- Uncertain long-term durability
- Lack of strong evidence

EVAR in Ptes with Hostile Neck Anatomy

Analysis of outcomes for hostile and favourable necks

Outcomes	Favourable Neck	Hostile Neck	p value
	n=296	n=139	
30-day Outcomes			
Technical Success	292 (98.6)	136 (97.8)	0.83
30-day mortality	3 (1.01)	3 (2.1)	0.6
Type I Endoleak	4 (1.3)	6 (4.3)	0.11
Follow-Up			
Overall Mortality	13 (4.3)	3 (2.1)	0.37
AAA related mortality	4 (1.3)	0	0.56
Type 1 endoleak	9 (3.04)	10 (7.1)	0.076
Type 2 endoleak	25 (8.44)	9 (6.47)	0.6
Type 3 endoleak	3 (1.01)	1 (0.71)	0.81
Migration	2 (0.67)	1 (0.71)	0.56
Reintervention	16 (5.4)	15 (10.79)	0.066

Conclusions

- Fenestrated/branched/bifurcated grafts offer the promise of extending benefit of endovascular therapy for Ptes with aortic aneurisms & hostile anatomy.
- Fenestrated and bifurcated grafts are a potential but expensive solution
- Long time for manufacturing is a limitation for fenestrated & Branched Devices.
- However, with time, money and skill they have good short and mid-term outcomes.
- Chimney and other similar techniques can be a cheaper and faster solution, which seems to have acceptable outcomes.
- All these techniques need further investigation.

