

Diagnostic Accuracy of A Fast Computational Approach to Derive Fractional Flow Reserve from Coronary X-Ray Angiography: Results from the International Multicenter FAVOR (Functional Assessment by Various FlOw Reconstructions) Pilot Study

Shengxian Tu*, Jelmer Westra, Junqing Yang, Clemens von Birgelen, Angela Ferrara, Mariano Pellicano, Holger Nef, Matteo Tebaldi, Yoshinobu Murasato, Alexandra Lansky, Emanuele Barbato, Johan H.C. Reiber, Niels R. Holm, William Wijns

* Shanghai Jiao Tong University, Shanghai, China

Med-X Research Institute

School of Biomedical Engineering

Speaker's name:

□ I have the following potential conflicts of interest to report:

Institutional grant/research support: Medis medical imaging systems bv

The pressure gradient across a stenosis is related to the flow

Pressure-based FFR is determined by both the stenosis geometry and the flow modulated by the downstream perfusion!

Kern MJ. Circulation 2000; 101:1344-51

Tu et al. JACC Cardiovasc Interv 2014, 7:768-777

Pressure drop in the main vessel will be substantially overestimated if the side branches are not reconstructed, especially in hyperemic condition!

Tu et al. JACC Cardiovasc Interv 2014, 7:768-777.

Li et al. JACC 2015;66:125-35.

Quantitative flow ratio (QFR) is a novel method for rapid computation of FFR from X-ray coronary angiography.

The validated QFR algorithms transferred from prototype to alpha version of QAngio XA 3D (February 2016)

Quantitative flow ratio (QFR) is a novel method for rapid computation of FFR from X-ray coronary angiography.

OFR can be derived from 3 flow models with:

- fixed-flow QFR (fQFR) \rightarrow empiric hyperemic flow •
- •
- contrast-flow QFR (cQFR) \rightarrow modeled hyperemic flow
- adenosine-flow QFR (aQFR) \rightarrow measured hyperemic flow •

The aim of this study was to identify the optimal approach for simple and fast QFR computation.

> cQFR ≠ rest Pd/Pa cQFR ≠ contrast Pd/Pa

Study Design

• Observational multicenter study;

euro

- Feasibility and accuracy of 3 different QFR computational methods;
- Pressure wire FFR measured at maximal stable hyperemia as the standard reference;
- Blinded QFR core laboratory;
- Separated and blinded FFR core laboratory.

Study Organization

Principle investigators

- William Wijns, MD, PhD, FESC, Principal investigator
- Shengxian Tu, PhD, FESC, Principal investigator

Co-principal Investigator: Johan H.C. Reiber, PhD, FESC, FACC

Participating centers

- 1. Cardiovascular Research Center Aalst, OLV Hospital, Belgium; William Wijns, MD, PhD
- 2. Department of Cardiology, Guangdong General Hospital, Guangzhou, China; Junqing Yang, MD
- 3. Department of Cardiology, Yale Medical School, New Haven, Connecticut, USA; Alexandra Lansky, MD
- 4. Division of Cardiology, Federico II University, Naples, Italy; Emanuele Barbato, MD, PhD
- 5. Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy; Gianluca Campo, MD
- 6. Department of Cardiology, MST, Enschede, the Netherlands; Clemens von Birgelen, MD, PhD
- 7. Department of Cardiology, Univ Clinic Giessen & Marburg, Giessen, Germany; Holger Nef, MD
- 8. Department of Cardiology, Kyushu Medical Center, Fukuoka, Japan; Yoshinobu Murasato, MD, PhD

Core laboratories

- FFR: Interventional Coronary Imaging Core Laboratories, Aarhus University Hospital, Skejby, Denmark
- QCA and QFR: ClinFact, Leiden, the Netherlands

Funding: This was a non-funded investigator-initiated study. Expenses associated with study enrolment and procedures were covered by the participating centers.

Study Protocol

euro

*Check Pd/Pa guiding = 1

When FFR < 0.75 or > 0.85

Pressure drift check If Pd/Pa <0.95 or >1.05: equalize and repeat step
➢ When FFR between 0.75-0.85
If Pd/Pa <0.98 or >1.02 : equalize and repeat step

CR QFR Analysis (core lab)

FFR Analysis (core lab)

maximal stable hyperemia

Study Flow Chart

*Pressure wire-based FFR traces were missing for the cases that were not analyzed by the ICA/FFR core-labs.

Baseline Characteristics

Patient characteristics

	n = 73		
Age, yrs	65.8±8.9		
Male	61 (83.5)		
Body mass index	26.3±6.3		
Hypertension	32 (43.8)		
Diabetes mellitus	17 (27.4)		
Cardiovascular history			
Prior MI	23 (31.5)		
Prior PCI	28 (38.4)		
Prior CABG	2 (2.7)		

Homogeneity of intermediate lesions

Vessel and procedural related

n = 84		
Lesion location		
Left main stem	1 (1.2)	
Left anterior descending artery	46 (54.8)	
Diagonal branch	1 (1.2)	
Left circumflex artery	12 (14.3)	
Obtuse marginal branch	5 (6.0)	
Right coronary artery	19 (22.6)	
Fractional flow reserve		
Mean ± SD	0.84±0.08	
Median [IQR]	0.85 [0.77, 0.89]	
Minimum lumen area, mm ²	1.94 [1.41, 2.62]	
Percent area stenosis, %	64.5±4.5	
Reference diameter, mm	2.84 [2.57, 3.06]	

Values are n (%), mean \pm SD, or median [IQR].

Correlation and Agreement

Diagnostic Performance

Increase in AUC fQFR – DS%: 0.16 (p = 0.003) cQFR – DS%: 0.20 (p < 0.001) aQFR – DS%: 0.19 (p < 0.001) cQFR – fQFR: 0.04 (p = 0.006) cQFR – aQFR: 0.01 (p = 0.646)

Diagnostic Performance

Clinical population requiring FFR. Consistent with previous studies^{1,2,3}

	fQFR ≤ 0.8	cQFR ≤ 0.8	aQFR ≤ 0.8	5% ≥ 50%
Accuracy	80 (71-89)	86 (78-93)	87 (80-94)	65 (55-76)
Sensitivity	67 (46-84)	74 (54-89)	78 (58-91)	44 (26-65)
Specificity	86 (74-94)	91 (81-97)	91 (81-97)	79 (66-89)
PPV	69 (48-86)	80 (59-93)	81 (61-93)	50 (29-71)
NPV	85 (73-93)	88 (77-95)	90 (79-96)	75 (62-85)
LR+	4.8 (2.4-9.5)	8.4 (3.6-20.1)	8.9 (3.7-21.0)	2.1(1.1-4.1)
LR-	0.4 (0.2-0.7)	0.3 (0.1-0.5)	0.2 (0.1-0.5)	0.7 (0.5-1.0)
AUC	0.88 (0.79-0.94)	0.92 (0.85-0.97)	0.91 (0.83-0.96)	0.72 (0.62-0.82)

Good diagnostic accuracy

1. Toth et al. Eur Heart J 2014; 35:2831-8.

2. Tu et al. JACC Cardiovasc Interv 2014, 7:768-77.

3. Tu et al. JACC Cardiovasc Interv 2015, 8:564-74.

Projection-related Variation

Contrast-flow QFR

- In 5 (6%) vessels, frame count analysis was performed in 1 projection only, due to poor visualization of dye flow in the other projection.
- Difference of two cQFR computations: 0.003 ± 0.030 (p=0.31).

Adenosine-flow QFR

- In 11 (13%) vessels, frame count analysis was performed in 1 projection only, due to poor visualization of dye flow in the other projection.
- Difference of two aQFR computations: 0.005±0.026 (p=0.12).

Conclusions

- Fast computation of FFR from coronary angiography (QFR), acquired with or without pharmacological hyperemia-induction, is feasible.
- Contrast-flow QFR (cQFR) based on conventional diagnostic coronary angiography provides results similar to QFR based on hyperemic conditions, and is superior to fixed-flow QFR.
- The favorable results of cQFR bears the potential of a wider adoption of FFR-based lesion assessment, as cQFR might reduce procedure time, risk, and costs (no need to use pressure wire, and no need to induce maximal hyperemia).