\section*{| 0 | euro | |
| :--- | :--- | :--- |
| 0 | D | |
| \sim | | |}

Diagnostic Accuracy of A Fast Computational Approach to Derive Fractional Flow Reserve from Coronary X-Ray Angiography: Results from the International Multicenter FAVOR (Functional Assessment by Various FIOw Reconstructions) Pilot Study

Shengxian Tu*, Jelmer Westra, Junqing Yang, Clemens von Birgelen, Angela Ferrara, Mariano Pellicano, Holger Nef, Matteo Tebaldi, Yoshinobu Murasato, Alexandra Lansky, Emanuele Barbato, Johan H.C. Reiber, Niels R. Holm, William Wijns

* Shanghai Jiao Tong University, Shanghai, China

Speaker's name:

I I have the following potential conflicts of interest to report:
Institutional grant/research support: Medis medical imaging systems bv

Background

The pressure gradient across a stenosis is related to the flow
Pressure-based FFR is determined by both the stenosis geometry and the flow modulated by the downstream perfusion!

Severe stenosis

Flow
Kern MJ. Circulation 2000; 101:1344-51

Background

Tu et al. JACC Cardiovasc Interv 2014, 7:768-777

Background

Pressure drop in the main vessel will be substantially overestimated if the side branches are not reconstructed, especially in hyperemic condition!

Background

Quantitative flow ratio (QFR) is a novel method for rapid computation of FFR from X-ray coronary angiography.

The validated QFR algorithms transferred from prototype to alpha version of QAngio XA 3D (February 2016)

Background

Quantitative flow ratio (QFR) is a novel method for rapid computation of FFR from X-ray coronary angiography.

QFR can be derived from 3 flow models with:

- fixed-flow QFR (fQFR) \rightarrow empiric hyperemic flow
- contrast-flow QFR (cQFR) \rightarrow modeled hyperemic flow
- adenosine-flow QFR (aQFR) \rightarrow measured hyperemic flow

The aim of this study was to identify the optimal approach for simple and fast QFR computation.

cQFR \neq rest $\mathrm{Pd} / \mathrm{Pa}$

cQFR \neq contrast $\mathrm{Pd} / \mathrm{Pa}$

Study Design

- Observational multicenter study;
- Feasibility and accuracy of 3 different QFR computational methods;
- Pressure wire FFR measured at maximal stable hyperemia as the standard reference;
- Blinded QFR core laboratory;
- Separated and blinded FFR core laboratory.

${ }_{-}^{\circ}{ }^{\circ} \mathrm{PCO} R$
 Study Organization

Principle investigators

- William Wijns, MD, PhD, FESC, Principal investigator
- Shengxian Tu, PhD, FESC, Principal investigator

Co-principal Investigator: Johan H.C. Reiber, PhD, FESC, FACC

Participating centers

1. Cardiovascular Research Center Aalst, OLV Hospital, Belgium; William Wijns, MD, PhD
2. Department of Cardiology, Guangdong General Hospital, Guangzhou, China; Junqing Yang, MD
3. Department of Cardiology, Yale Medical School, New Haven, Connecticut, USA; Alexandra Lansky, MD
4. Division of Cardiology, Federico II University, Naples, Italy; Emanuele Barbato, MD, PhD
5. Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy; Gianluca Campo, MD
6. Department of Cardiology, MST, Enschede, the Netherlands; Clemens von Birgelen, MD, PhD
7. Department of Cardiology, Univ Clinic Giessen \& Marburg, Giessen, Germany; Holger Nef, MD
8. Department of Cardiology, Kyushu Medical Center, Fukuoka, Japan; Yoshinobu Murasato, MD, PhD

Core laboratories

- FFR: Interventional Coronary Imaging Core Laboratories, Aarhus University Hospital, Skejby, Denmark
- QCA and QFR: ClinFact, Leiden, the Netherlands

Funding: This was a non-funded investigator-initiated study. Expenses associated with study enrolment and procedures were covered by the participating centers.

Study Protocol

Pressure drift check

*Check Pd/Pa guiding = 1

$>$ When FFR <0.75 or >0.85
If $\mathrm{Pd} / \mathrm{Pa}<0.95$ or >1.05 : equalize and repeat step
> When FFR between 0.75-0.85
If $\mathrm{Pd} / \mathrm{Pa}<0.98$ or >1.02 : equalize and repeat step

${ }^{\circ} \mathrm{O}$ Puo R QFR Analysis (core lab)

flow $0.35 \mathrm{~m} / \mathrm{s}$

based on CAG 2

based on CAG 3
based on CAG 4
fQFR $=0.75$

$$
c Q F R=0.72
$$

$$
a Q F R=0.73
$$

$\stackrel{\circ}{\circ} \mathrm{Panc}$ R FFR Analysis (core lab)

maximal stable hyperemia

Por
 Study Flow Chart

*Pressure wire-based FFR traces were missing for the cases that were not analyzed by the ICA/FFR core-labs.

Baseline Characteristics

Patient characteristics

	$\mathrm{n}=73$
Age, yrs	65.8 ± 8.9
Male	$61(83.5)$
Body mass index	26.3 ± 6.3
Hypertension	$32(43.8)$
Diabetes mellitus	$17(27.4)$
Cardiovascular history	
Prior MI	$23(31.5)$
Prior PCI	$28(38.4)$
Prior CABG	$2(2.7)$

Vessel and procedural related

$\mathrm{n}=84$	
Lesion location	
Left main stem	$1(1.2)$
Left anterior descending artery	$46(54.8)$
Diagonal branch	$1(1.2)$
Left circumflex artery	$12(14.3)$
Obtuse marginal branch	$5(6.0)$
Right coronary artery	$19(22.6)$
Fractional flow reserve	0.84 ± 0.08
Mean \pm SD	0.85 [0.77, 0.89]
Median [IQR]	1.94 [1.41, 2.62]
Minimum lumen area, mm²	64.5 ± 4.5
Percent area stenosis, $\%$	$2.84[2.57,3.06]$
Reference diameter, mm	

Values are $\mathrm{n}(\%)$, mean $\pm \mathrm{SD}$, or median [IQR].

${ }^{\circ} \mathrm{P}=\mathrm{Pu} \mathbf{R}$ Correlation and Agreement

Difference: 0.003 ± 0.069

0.001 ± 0.059

Adenosine-flow

-0.001 ± 0.065

${ }^{\circ}{ }^{2} \mathrm{Pu}(\mathrm{R}$ Diagnostic Performance

Increase in AUC
fQFR - DS\%: 0.16 ($p=0.003$)
cQFR - DS\%: 0.20 ($\mathrm{p}<0.001$)
aQFR - DS\%: 0.19 ($\mathrm{p}<0.001$)
cQFR - fQFR: 0.04 ($p=0.006$)
cQFR - aQFR: 0.01 ($\mathrm{p}=0.646$)

Pct
 Diagnostic Performance

Clinical population requiring FFR.
Consistent with previous studies ${ }^{1,2,3}$

	fQFR ≤ 0.8	cQFR ≤ 0.8	aQFR ≤ 0.8	$5 \% \geq 50 \%$
Accuracy	$80(71-89)$	$86(78-93)$	$87(80-94)$	$65(55-76)$
Sensitivity	$67(46-84)$	$74(54-89)$	$78(58-91)$	$44(26-65)$
Specificity	$86(74-94)$	$91(81-97)$	$91(81-97)$	$79(66-89)$
PPV	$69(48-86)$	$80(59-93)$	$81(61-93)$	$50(29-71)$
NPV	$85(73-93)$	$88(77-95)$	$90(79-96)$	$75(62-85)$
LR+	$4.8(2.4-9.5)$	$8.4(3.6-20.1)$	$8.9(3.7-21.0)$	$2.1(1.1-4.1)$
LR-	$0.4(0.2-0.7)$	$0.3(0.1-0.5)$	$0.2(0.1-0.5)$	$0.7(0.5-1.0)$
AUC	$0.88(0.79-0.94)$	$0.92(0.85-0.97)$	$0.91(0.83-0.96)$	$0.72(0.62-0.82)$

Good diagnostic accuracy

1. Toth et al. Eur Heart J 2014; 35:2831-8.
2. Tu et al. JACC Cardiovasc Interv 2014, 7:768-77.
3. Tu et al. JACC Cardiovasc Interv 2015, 8:564-74.

${ }^{\circ} \mathrm{Pu}$ © $\mathbb{R}^{\text {Projection-related Variation }}$

Contrast-flow QFR

Adenosine-flow QFR

- In 11 (13\%) vessels, frame count analysis was performed in 1 projection only, due to poor visualization of dye flow in the other projection.
- Difference of two aQFR computations: 0.005 ± 0.026 ($p=0.12$).

Conclusions

- Fast computation of FFR from coronary angiography (QFR), acquired with or without pharmacological hyperemia-induction, is feasible.
- Contrast-flow QFR (cQFR) based on conventional diagnostic coronary angiography provides results similar to QFR based on hyperemic conditions, and is superior to fixed-flow QFR.
- The favorable results of cQFR bears the potential of a wider adoption of FFR-based lesion assessment, as cQFR might reduce procedure time, risk, and costs (no need to use pressure wire, and no need to induce maximal hyperemia).

