

Pulmonary valve replacement: experience using the Venus P-Valve

Alejandro Peirone MD, FSCAI

Hospital Privado Universitario de Córdoba y Hospital de Niños de Córdoba, Argentina

June 8th-10th, Rio de Janeiro, Brazil

Disclosure information

Lecture title:

Pulmonary valve replacement: experience using the Venus P-Valve

Alejandro Peirone MD, FSCAI

As a faculty member for this program, I disclose the following relationships with industry:

None

Background

- Percutaneous PVR is a recognized alternative to repeated surgery after development of - significant PR
 - RV dilation
 - and / or RV dysfunction.

The overall safety and effectiveness of the interventional procedure has compared favourably with surgical repair.

- Nevertheless, limitations for PVR using the current valves available exist mainly due to - large RVOT
 - native outflow tracts.

Background

- Clinical experience to date with transcatheter PVR has been limited to two balloon expandable systems: Melody Valve (Medtronic Inc, Minneapolis, MN) Sapien Valve (Edwards Lifesciences, Irvine, CA).
- Both have undergone clinical trials with good medium-term valve durability.

- In the majority of pts requiring PVR, these balloon expandable systems are not large enough to maintain stable valve position within the dilated native RVOT.
- Therefore more recent efforts have concentrated on a self-expanding system to provide valve competence despite significant dilation of the native RVOT in a wide variety of post-operative anatomical variants.

RVOTO anomalies (@ 20.1% of all CHD pts)

~85% of RVOT pts

MRI and different anatomies of RVOT

Early attempts of RVOT "reducers"

Dr. K. Amplatz

Dr. P. Bonhoeffer

Custom patient experience. 42 yo male. January 2009 - Pre implant CT evaluation

Dr. P. Bonhoeffer

Custom patient experience. 42 yo male. Implantation date: January 2009 The device

Dr. P. Bonhoeffer

Custom patient experience. 42 yo male. January 2009 – The device

Dr. P. Bonhoeffer

History

- Developed by Dr. Qi-Ling Cao & Venus MedTech Team.
- First in-man implantation: female pt in 2011 in Hanoi.
 Vietnam Heart Institute.
- First pt in China: 14 yo girl in 2013 in Shanghai.
 Shanghai Zhongshan Hospital.
- Trial in China started in 2013 and enrolled @ 45 pts.
- First pt in LATAM: Pontificia Universidad Católica de Chile Dr. F. Garay & team. March 2016.

The valve:

- Self-expandable Nitinol multi-level support frame.
- > Tri-leaflet porcine pericardial tissue.
- Preserved in low-concentration solutions of buffered gluteraldehyde.
- > 19–24 Fr catheter delivery system.
- The entire stent is covered (except the distal cells) by hand-sewn porcine pericardial tissue.

The valve:

- Flared uncovered distal end secures anchoring at PA bifurcation with radiopaque markers.
- Flared covered proximal end allowing conformability with the dilated RVOT with two "ears".
- Stent valve diameters range from 20 to 34 mm (in 2 mm increments) with each diameter available in 20, 25 and 30 mm straight sections lengths. Add 10 mm in diameter & length for each flared end.

Initial modeling work

Initial modeling work

Initial animal lab experience

Initial animal lab experience

Initial animal lab experience

Animal lab experience

Animal lab experience

The valve:

The valve: Valve crimper

Symmetrically reduces the diameter/profile of the valve when loaded inside the catheter.

The valve: Delivery system

The delivery system consists of a 20–22 Fr capsule and a 16 Fr 100 cm long shaft, with a rotating handle for deployment of the valve with a slow (white arrow) and fast valve (red arrow) deployment

Patient selection criteria:

- 1. Age: ≥ 10 years/old; Weight: ≥ 18 Kg
- 2. Severe PR: TTE ≥ 3+; MRI > 30%, PRRF > 40%
- 3. Dilated RV & RA size (TTE & MRI) RV EDV 130 ml/m² ≤ index ≤ 160 ml/m²; RV EF < 40% (MRI)
- 4. Non significant structure narrowing of RVOT, MPA and branch of PA (RPA & LPA) (TTE, MRI & CT)
- 5. During catheterization sizing balloon determined no coronary artery compression
- 6. Maximal RVOT diameter 30-32 mm (balloon sizing)

Selection criteria:

TT echocardiography is very important!!

The procedure:

MRI

Balloon sizing

The procedure:

Balloon sizing

LCA angiography

The procedure:

Initial LPA position

Early deployment

The procedure:

Partial deployment

Full deployment & final position

Initial data:

Early Clinical Experience With a Novel Self-Expanding Percutaneous Stent-Valve in the Native Right Ventricular Outflow Tract

Qi-Ling Cao, 1 мв, Damien Kenny, 1 мв, мв, Daxin Zhou, 2 мв, Wenzhi Pan, 2 мв, Lihua Guan, 2 мв, Junbo Ge, 2 мв, Рьв, and Ziyad M. Hijazi, 1* мв, мрн

Catheterization and Cardiovascular Interventions 2014; 84: 1131–1137

5 pts Median age 33 years Mean body weight 54.8 kg

Initial data:

Original Article

Percutaneous pulmonary valve implantation with the Venus P-valve: clinical experience and early results

Worakan Promphan, Pimpak Prachasilchai, Suvipaporn Siripornpitak, Shakeel A. Qureshi, Thanarat Layangool

¹Pediatric Heart Center, Queen Sirikit National Institute of Child Health, College of Medicine, Rangsit University;

²Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand;

³Department of Paediatric Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom

Cardiology in the Young 2016; 26: 698-671

6 pts Median age 18.5 years Mean body weight 53.8 kg

Venus P- Valve China Clinical Trial Updated April 2016.

Data provided by Dr. Z. Hijazi & Venus MedTech team.

Demographics

Characteristics	N= 45
Age	29.1±12.0
Female Gender	73% (33)
Weight (kg)	53.7±8.2
Height (cm)	161.8±6.2
Age of 1st TOF repair (yrs)	14.0±11.6
Time from 1 st TOF repair to PPVI.	15.1 ±8.7
NYHA Class III	20%
NYHA Class II	80%
PR grade 4 (severe)	64%
LV EF	60.8±10.8

Pre-Procedural data

Characteristics	Value (N)
RVOT diameter , Mean ± SD (mm)	
Echo	30.5±5.5 (36)
Annular Diameter , Mean ± SD (mm)	
Echo CT	23.3±4.9 (39) 27.4±4.9 (42)
Mid-MPA diameter , Mean ± SD (mm)	
Echo	24.1 ±4.1 (44)
Narrow -MPA diameter , Mean ± SD (mm)	
СТ	24.7±3.4 (30)
RPA Diameter , Mean ± SD (mm)	
СТ	19.7±5.3 (39)
LPA Diameter , Mean ± SD (mm)	
СТ	17.7±4.6 (39)

NYHA Functional Class

In 26 pts their NYHA class improved from class III to class II or I during the 6m follow-up

EKG - QRS duration (msec)

QRS wave duration narrowed down by 5.3% for 26 pts during 6m follow-up

RVED volume - Primary End Point

RVEDVI has significantly decreased in 24 patients during 6m follow-up (RVEDV: 150 + 37 vs 117 + 31, p<0.01)

Pulmonary valve regurgitation (grade)

0:absent

1: trivial

2: mild

3: moderate

4:severe or free

27 pts showed mild or none PR during 6m follow up (mild # 12, none # 15)

TT Doppler Echocardiography

LVEF increased by 6.9% in 27 pts during 6m follow-up and improved by 10.4% in 12 pts during 12m follow-up

Sudden Adverse Events

SAE	Cases	Treatment	Outcome
Death	•		1 month after intervention. Transit accident.
Endocarditis	1	Antibiotic and surgical removal	Healed without sequence
Fever	2	Antibiotic	Healed without sequence
Migration	1	Surgical intervention for fixation	Healed without sequence
Arrhythmia	1	Electrical conversion	Healed without sequence

Delivery system malfunction:

Aborted case. Breaking of the capsule

Worakan Promphan data. TCTAP 2016

Delivery system malfunction:

Piercing of the stent strut out of the capsule while uncovering the sheath

Delivery system and valve modifications:

Delivery system modifications

- Braiding/thickened capsule
- Longer and softer carrot
- 3. Seamless carrot-capsule connection

Med Tech team data.

Valve complication: RPA oclusion

Prior RPA stenosis occluded by Venus P-valve needing stenting (Max LD 26 mm in lenght on a 15 x 30 mm Crystal balloon)

Fluroscopy follow-up:

Single wire fracture 4 cases (earliest @ 3 months) w/o hemodynamic consequences

Worldwide experience: 36 pts

Global Compassionate Implantation, As of March, 2016					
City/Country	Case No.	Hospital	Program Leader		
London, UK	8	Evelina Children's Hospital	Dr. Shakeel A Qureshi		
Dublin, Ireland	1		Dr. Kevin Walsh		
Hanoi, Vietnam	1	Hanoi Medical University Hospital	Dr. Nguyen Lan Hieu		
Bangkok, Thailannd	13	Queen Sirikit National Institute of Child Health	Dr. Worakan Promphan		
Jakarta, Indonesia	1	Harapan Kita National Cardiovascular Center	Dr. Indriwanto Atmosudigdo		
Kochi,India	2	Amrita Institute of Medical Sciences	Dr. Raman Krishna Kumar		
Chennai, India	6	The MADRAS MEDICAL MISSION	Dr. K. Sivakumar		
Hyderabad, India	1	Care Hospital	Dr. Nageswara Rao		
Santiago, Chile	3	Pontificia Universidad Católica de Chile	Dr. Francisco Garay		

Next step...

The Venus P-Valve ® System for Conduit RVOTs

- A straight body self-expanding Nitinol frame with a trileaflet porcine pericardial tissue valve
- A 19-24 French catheter delivery system
- A disposable loading system with a crimper

Venus P Valve®
Straight body for
pre-stented conduit
Max diameter 30 mm

SOLAC SBHC 2016

Conclusions:

- The Venus P-Valve can be implanted successfully and effectively in pts with severe PR and a large RVOT after transannular patch surgery.
- The valve restores early, sustained pulmonary competence with RV remodeling and improvement in clinical symptoms.
 - Early results with this valve are encouraging.
 - More extensive clinical trials are in progress and will likely provide more robust longer-term data on the valve functionality and durability.

Acknowledgments

Gracias!