

Venus P-Valve: The valve and initial clinical worldwide experience

Alejandro Peirone MD, FSCAI

Hospital Privado Universitario de Córdoba y Hospital de Niños de Córdoba, Argentina

June 8th-10th, Rio de Janeiro, Brazil

Disclosure information

Lecture title:

Venus P-Valve: The valve and initial clinical worldwide experience

Alejandro Peirone MD, FSCAI

As a faculty member for this program, I disclose the following relationships with industry:

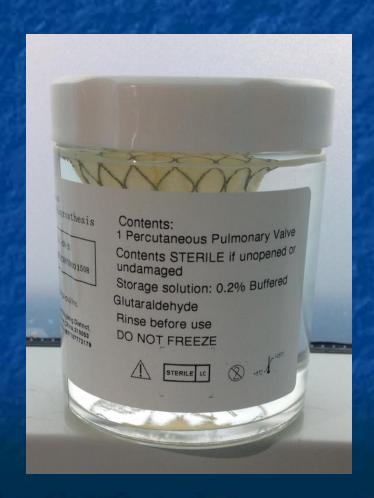
None

Background

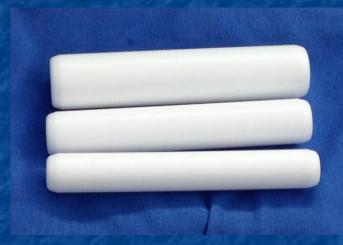
- Percutaneous PVR is a recognized alternative to repeated surgery after development significant PR, RV dilation and / or dysfunction.
- The overall safety and effectiveness of the interventional procedure has compared favourably with surgical repair.
- Limitations for PVR using Melody® & Edwards-Sapien® valves include unfavourably large RVOT, native RVOT and pts with no stenosis in the outflow tract.
- The Venus P-valve is a recently developed self-expanding porcine heart valve designed to adapt to a dilated RVOT.

History

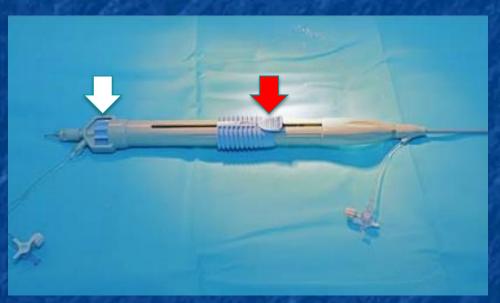
- Developed by Dr. Qi-Ling Cao & Venus MedTech Team.
- First in-man implantation: female pt in 2011 in Hanoi.
 Vietnam Heart Institute.
- First pt in China: 14 yo girl in 2013 in Shanghai.
 Shanghai Zhongshan Hospital.
- Trial in China started in 2013 and enrolled @ 45 pts.
- First pt in LATAM: Pontificia Universidad Católica de Chile Dr. F. Garay & team. March 2016.



- Self-expandable Nitinol multi-level support frame.
- Tri-leaflet porcine pericardial tissue.
- Preserved in low-concentration solutions of buffered gluteraldehyde.
- > 19–24 Fr catheter delivery system.
- The entire stent is covered (except the distal cells) by hand-sewn porcine pericardial tissue.


- Flared uncovered distal end secures anchoring at PA bifurcation with radiopaque markers.
- Flared covered proximal end allowing conformability with the dilated RVOT with two "ears".
- Stent valve diameters range from 20 to 34 mm (in 2 mm increments) with each diameter available in 20 and 30 mm straight sections lengths. Add 10 mm in length for each distal flare portion.

The valve: Valve crimper



Symmetrically reduces the diameter/profile of the valve when loaded inside the catheter.

The valve: Delivery system



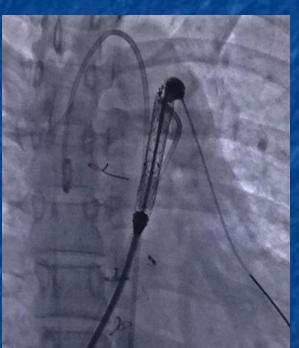
The delivery system consists of a 20–22 Fr capsule and a 16 Fr 100 cm long shaft, with a rotating handle for deployment of the valve with a slow (white arrow) and fast valve (red arrow) deployment

22F – 24F introducer

Once crimped in ice-water, the valve maintains its shape

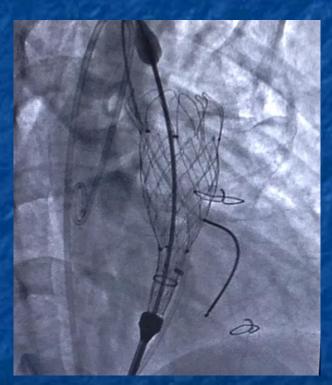
The procedure:

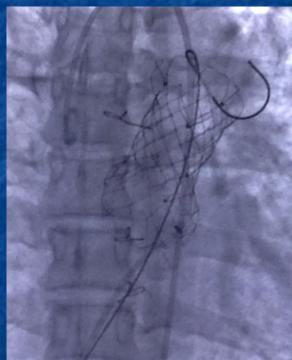
Echocardiography

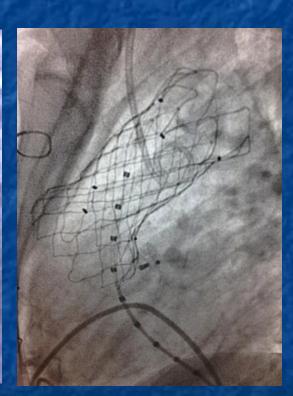

MRI

Balloon sizing

The procedure:



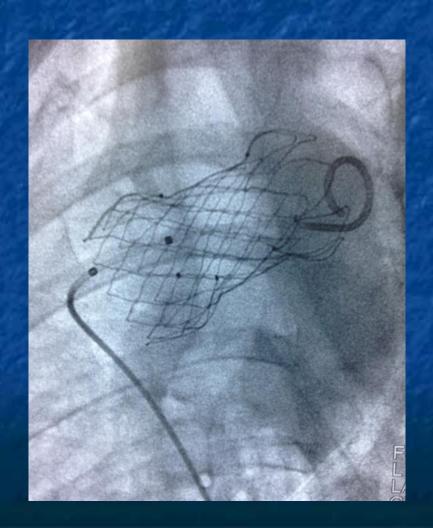

LCA angiography



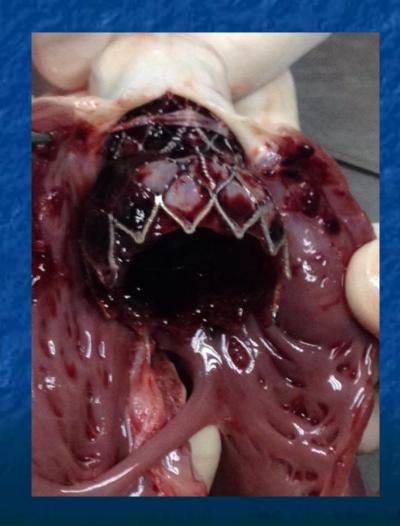
Position and initial deployment

The procedure:

Partial deployment


Final position





Background

Early Clinical Experience With a Novel Self-Expanding Percutaneous Stent-Valve in the Native Right Ventricular Outflow Tract

Qi-Ling Cao, 1 мb, Damien Kenny, 1 мb, мb, Daxin Zhou, 2 мb, Wenzhi Pan, 2 мb, Lihua Guan, 2 мb, Junbo Ge, 2 мb, Рhb, and Ziyad M. Hijazi, 1* мb, мрн

Catheterization and Cardiovascular Interventions 2014; 84: 1131–1137

5 pts Median age 33 years Mean body weight 54.8 kg

Outcomes

	Weight (kg)	0	QRSd (msec)	Minimum diameter (mm)		RVEDV (ml/m ²)	
Patient 1	52	20	170	22	24	155	III
Patient 2	42	30	178	21	24	150	Π
Patient 3	58	39	174	21	23	168.6	Π
Patient 4	47	35	170	27	34	166.2	\mathbf{III}
Patient 5	75	45	160	23	24	135	II

Mean QRS duration
Minimum annulus diameter
MPA diameter
Mean RVED volume

170.4 msec 22.8 mm (21-27) 25.8 mm (24-34) 155.0 ± 16.6 ml/m2

CCI 2014; 84: 1131–1137

Outcomes

- NYHA functional class
- Mean PA diastolic pressure
- Valve diameter implanted (mm)
- Valve lenght implanted (mm)
- Procedure time
- Fluoroscopy time
- Paravalvular leak
- > Acute complications

II (3p), III (2p)

 3 ± 3.7 mm Hg

26 (3 p), 30 (1 p), 32 (1 p)

30 (5 p)

136 \pm 26.8 min

22.8 ± **8.8** min

None

None

Initial data:

Original Article

Percutaneous pulmonary valve implantation with the Venus P-valve: clinical experience and early results

Worakan Promphan, Pimpak Prachasilchai, Suvipaporn Siripornpitak, Shakeel A. Qureshi, Thanarat Layangool

¹Pediatric Heart Center, Queen Sirikit National Institute of Child Health, College of Medicine, Rangsit University;

²Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ³Department of Paediatric Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation

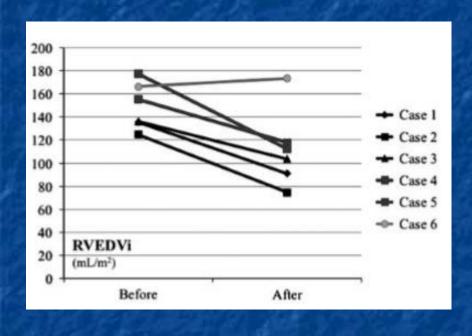
Trust, London, United Kingdom

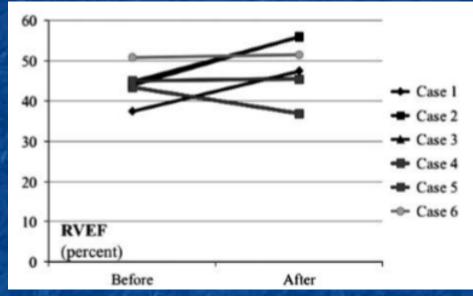
Cardiology in the Young 2016; 26: 698-671

6 pts Median age 18.5 years Mean body weight 53.8 kg

Outcomes

- Median time after last surgery
- Angiographic MPA size
- Balloon sizing MPA size
- RVOT lenght
- Difference MPA: MRI vs balloon sizing
- Valve diameter implanted
- Valve lenght implanted
- Procedure time
- Fluoroscopy time


- 13.5 y (10.7 15.3)
- $23.8 \pm 2.9 \text{ mm } (21 28)$
- $25.7 \pm 3.1 \, \text{mm} \, (21 30)$
- $30 \pm 4.8 \text{ mm } (23 26)$
- -2 to 4.7 mm
- 24 32 mm
- 30 mm (5 p) 20 mm (1 p)
- $114 \pm 14.6 \, \text{min} \, (94 130)$
- 29.8 \pm 1.3 min (28.3 31.3)


Outcomes:

	<u>Before</u>	<u>@ 6 months</u>
PR fraction	42.15% (36 – 45)	2.45% (2.2 – 4.7)
RV EF	44.35% (42- 46)	49.45% (43 – 56)
RV ED Vi	145.7 ml/m2 (132-169)	107.9 ml/m2 (86 – 131)

Cardiol Young 2016; 26: 698-671

Outcomes: Cardiac MRI f/u data

Outcomes: TTE f/u data

	TR severity		PR severity (mmHg)		RVOT PG (mmHg)			
Patient	Before	6 months	Before	6 months	Before	6 months	Paravalvar leak 6 months	
1	Mild	Trivial	Severe	No	8	40	No	
2	No	No	Severe	No	30	21	No	
3	No	Mild	Severe	Trivial	8	25	No	
4	Moderate	Mild	Severe	Trivial	6	10	No	
5	Moderate	Mild	Severe	No	30	14	No	
6	Trivial	Severe	Severe	No	5	4	Mild	

Pt # 6 had incomplete detachment of the "ear" of the valve at release with migration a few millimetres proximally into the RV during the retrieval of the delivery system causing severe TR due to tethering of the septal leaflet.

There was no RVOT pressure gradient after the procedure and an adequate PV competence. It was decided to continue observation of the pt.

Venus P- Valve China Clinical Trial Updated April 2016.

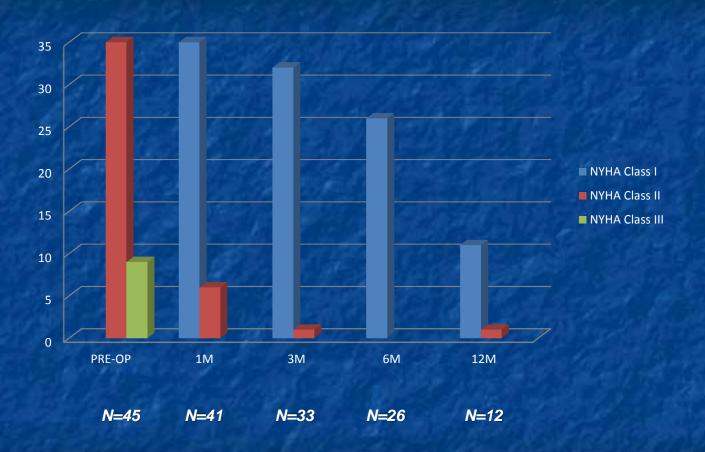
Data provided by Dr. Z. Hijazi & Venus MedTech team.

Demographics

Characteristics	<i>N</i> = 45			
Age	29.1 <i>±</i> 12.0			
Female Gender	73% (33)			
Weight (kg)	53.7±8.2			
Height (cm)	161.8±6.2			
Age of 1 st TOF repair (yrs)	14.0±11.6			
Time from 1 st TOF repair to PPVI.	15.1 <i>±</i> 8.7			
NYHA Class III	20%			
NYHA Class II	80%			
PR grade 4 (severe)	64%			
LV EF	60.8±10.8			

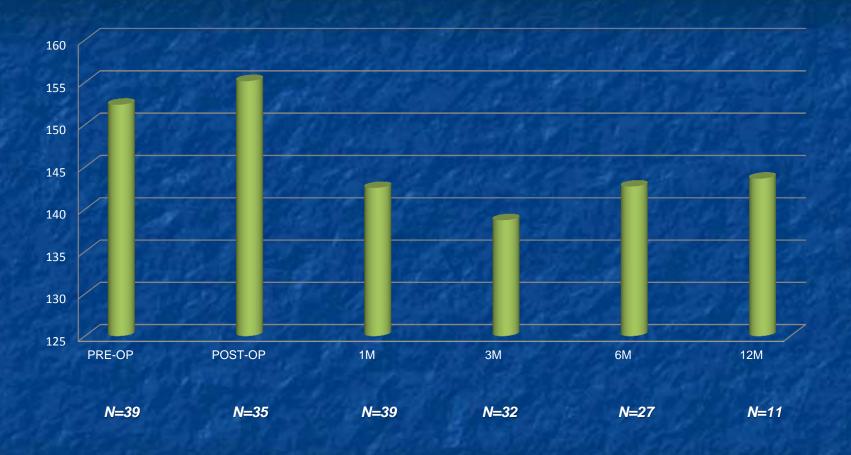
Pre-Procedural data

Characteristics	Valu	ue (N)
RVOT diameter , Mean ± SD (mm)		
E	cho 30.5±	:5.5 (36)
Annular Diameter , Mean ± SD (mm)		
E		:4.9 (39) :4.9 (42)
Mid-MPA diameter , Mean ± SD (mm)		
	cho 24.1±	4.1 (44)
Narrow -MPA diameter , Mean ± SD (m	nm)	
	CT 24.7±	÷3.4 (30)
RPA Diameter , Mean ± SD (mm)		
	CT 19.7±	£5.3 (39)
LPA Diameter , Mean ± SD (mm)		15 / July 19 4
	CT 17.7±	4.6 (39)

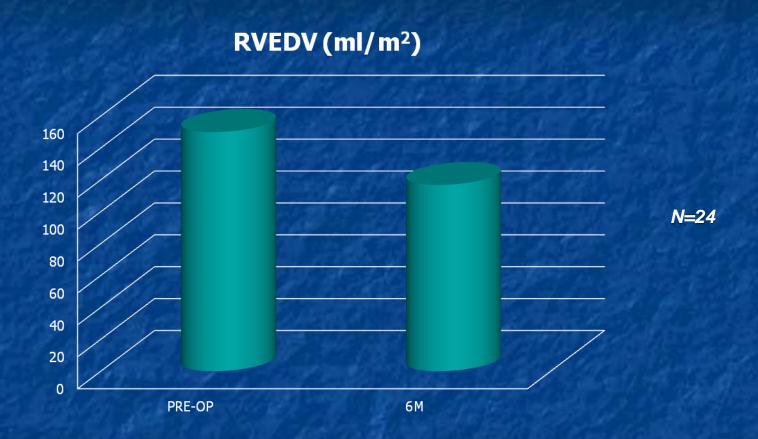

Implanted Venus P-Valve

Valve implanted	N° of pts	Annular diameter (mm)		
26 - 25mm	2	21		
28 - 25mm	1	25		
30 - 25mm	2	25		
26 - 30mm	8	23.2±2.3		
24 - 30mm	1	21		
28 - 30mm	8	24.9±1.7		
30 - 30mm	6	25.9±0.5		
32 - 25mm	1	26		
32 - 30mm	15	26.5±1.3		
30 - 35mm	1	24		

Fluoroscopy time (min): 22.5 ± 6.8


	Pre (N=41)			Post (N=40)		
PA pressure (mmHg)	28	7	14	32	14	19
RV pressure (mmHg)	36	4	13	37	5	14

NYHA Functional Class


In 26 pts their NYHA class improved from class III to class II or I during the 6m follow-up

EKG - QRS duration (msec)

QRS wave duration narrowed down by 5.3% for 26 pts during 6m follow-up

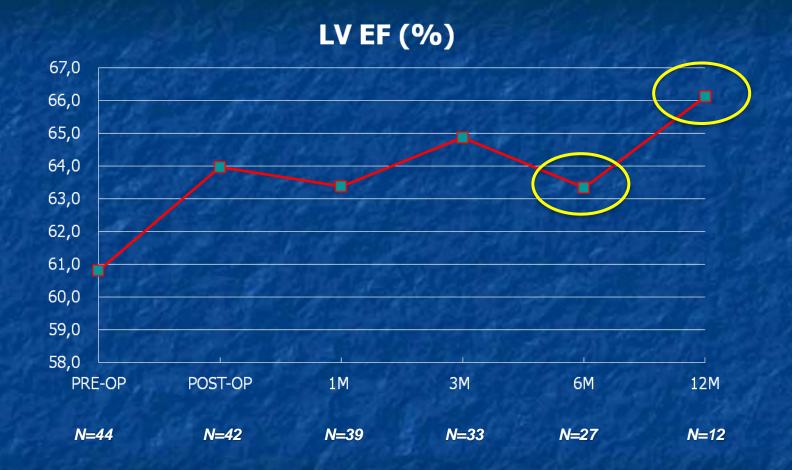
Primary End Point

RVEDVI has significantly decreased in 24 patients during 6m follow-up (RVEDV: $150 \pm 37 \text{ vs } 117 \pm 31, \text{ p} < 0.01$)

Pulmonary valve regurgitation (grade)

0:absent

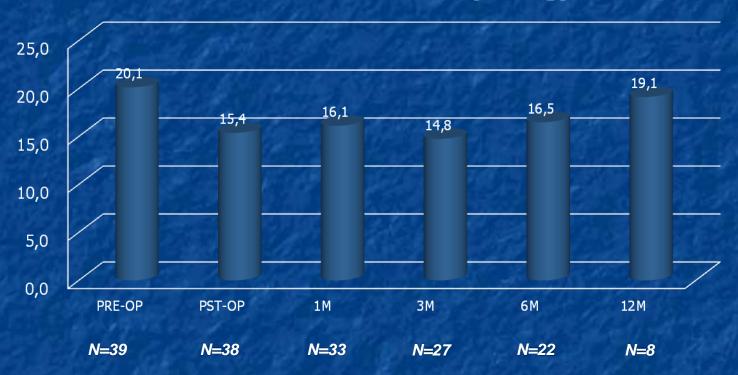
1: trivial


2: mild

3: moderate

4:severe or free

27 pts showed mild or none PR during 6m follow up (mild # 12, none # 15)

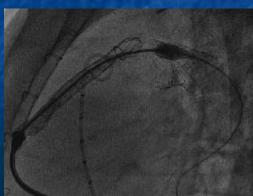

TT Doppler Echocardiography

LVEF increased by 6.9% in 27 pts during 6m follow-up and improved by 10.4% in 12 pts during 12m follow-up

TT Doppler Echocardiography

Transvalvular Gradients (mmHg)


RVOT gradient decreased by 14% for 22 pts at 6m follow-up and decresed by 4% for 8 pts during 12m follow-up


Sudden Adverse Events

SAE	Cases	Treatment	Outcome
Death	1		1 month after intervention. Transit accident.
Endocarditis	1	Antibiotic and surgical removal	Healed without sequence
Fever	2	Antibiotic	Healed without sequence
Migration	1	Surgical intervention for fixation	Healed without sequence
Arrhythmia	1	Electrical conversion	Healed without sequence

Delivery system malfunction:

Aborted case. Breaking of the capsule

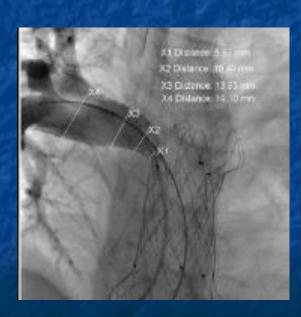
Worakan Promphan data. TCTAP 2016

Delivery system malfunction:

Piercing of the stent strut out of the capsule while uncovering the sheath

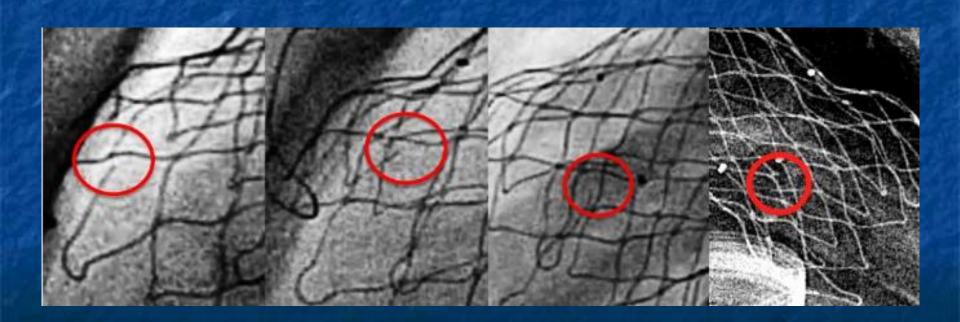
Delivery system and valve modifications:


Delivery system modifications


- Braiding/thickened capsule
- Longer and softer carrot
- 3. Seamless carrot-capsule connection

Valve complication: RPA oclusion

Prior RPA stenosis occluded by Venus P-valve needing stenting (Max LD 26 mm in lenght on a 15 x 30 mm Crystal balloon)



Fluroscopy follow-up:

Single wire fracture 4 cases (earliest @ 3 months) w/o hemodynamic consequences

Worldwide experience: 36 pts

Global Compassionate Implantation, As of March, 2016					
City/Country	Case No.	Hospital	Program Leader		
London, UK	8	Evelina Children's Hospital	Dr. Shakeel A Qureshi		
Dublin, Ireland	1		Dr. Kevin Walsh		
Hanoi, Vietnam	1	Hanoi Medical University Hospital	Dr. Nguyen Lan Hieu		
Bangkok, Thailannd	13	Queen Sirikit National Institute of Child Health	Dr. Worakan Promphan		
Jakarta, Indonesia	1	Harapan Kita National Cardiovascular Center	Dr. Indriwanto Atmosudigdo		
Kochi,India	2	Amrita Institute of Medical Sciences	Dr. Raman Krishna Kumar		
Chennai, India	6	The MADRAS MEDICAL MISSION	Dr. K. Sivakumar		
Hyderabad, India	1	Care Hospital	Dr. Nageswara Rao		
Santiago, Chile	3	Pontificia Universidad Católica de Chile	Dr. Francisco Garay		

SOLACI SBHCI 2016

Conclusions:

- The Venus P-Valve can be implanted successfully and effectively in pts with severe PR and a large RVOT after transannular patch surgery.
- The valve restores early, sustained pulmonary competence with RV remodeling and improvement in clinical symptoms.
 - Early results with this valve are encouraging.
 - More extensive clinical trials are in progress and will likely provide more robust longer-term data on the valve functionality and durability.

Acknowledgments

Gracias!

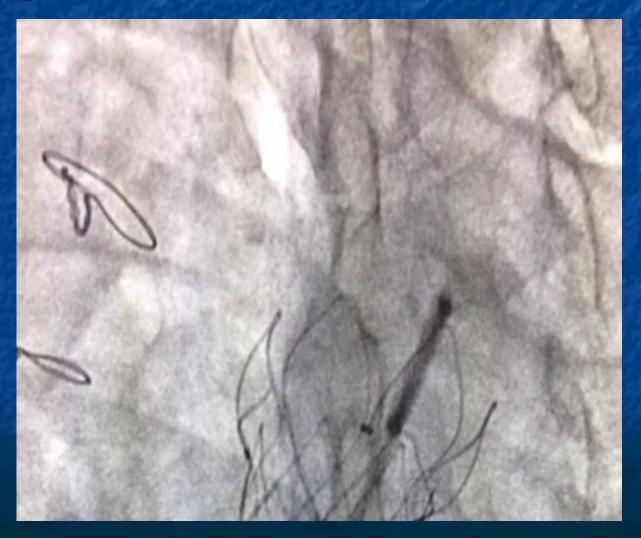
Background

- Clinical experience to date with transcatheter PVR has been limited to two balloon expandable systems: Melody Valve (Medtronic Inc, Minneapolis, MN) SAPIEN valve (Edwards Lifesciences, Irvine, CA).
- Both have undergone clinical trials with good medium-term valve durability.
- Limitations to the extended application of these valves have generally centered on the maximum diameter of the RVOT and native outflow tracts.
- In the majority of pts requiring PVR, these balloon expandable systems are not large enough to maintain stable valve position within the dilated native RVOT.
- Therefore more recent efforts have concentrated on a self-expanding system to provide valve competence despite significant dilation of the native RVOT adapting to the wide variety of post-operative anatomical variants.

The valve:

The Venus P-Valve® System for Conduit RVOTs

- A straight body self-expanding Nitinol frame with a trileaflet porcine pericardial tissue valve
- A 19-24 French catheter delivery system
- A disposable loading system with a crimper


Venus P Valve®
Straight body for
pre-stented conduit
Max diameter 30 mm

The valve:

The procedure:

