

Potential conflicts of interest

Speaker's name: Stefan Verheye

□ I have the following potential conflicts of interest to report:

Research contracts
Consulting
Employment in industry
Stockholder of a healthcare company
Owner of a healthcare company
Other(s)

X I do not have any potential conflict of interest

DESolve[™] Myolimus Eluting Bioresorbable Coronary Scaffold First-in-Man Trial 6-month Imaging and Clinical Results

Stefan Verheye, MD, PhD ZNA Middelheim, Antwerpen, Belgium

Wednesday, 16 May 2012

PCR 2012 DESolve™ Bioresorbable Coronary Scaffold

Taking advanced technologies from Elixir's DES platforms ...

- Excellent radial strength
- Low recoil
- Drug release to provide sustained neointimal inhibition
- Low drug dose

... and incorporating them into a scaffold that bioresorbs over 1 - 2 years

- PLLA-based polymer with excellent durability and flexibility
- Proven biocompatibility
- Proprietary fabrication and processing technology
- Broad range of sizes
 - 3.0, 3.25, and 3.5 mm diameters
 - 2.5, 2.75, and 3.75 available soon
 - 14 and 18 mm lengths

DESolve FIM Study Design

Key Endpoints

- Clinical: Major adverse cardiac events (cardiac death, target vessel MI, and clinically indicated TLR), and stent thrombosis
- **>**QCA: In-segment late lumen loss, binary restenosis, and percent diameter stenosis
- **>**IVUS: In-stent percent volume obstruction
- **>OCT:** Descriptive and quantitative analysis of lesion/vessel morphometry and scaffold strut composition
- MSCT: 12 and 24-month descriptive and quantitative analysis of lesion/vessel morphology

Angiographic Results

In-scaffold Analysis	n=14 (paired)	
RVD (mm)		
post-procedure	$\textbf{2.84} \pm \textbf{0.23}$	
at 6 months	$\textbf{2.78} \pm \textbf{0.27}$	
MLD (mm)		
post-procedure	$\textbf{2.60} \pm \textbf{0.19}$	
at 6 months	$\textbf{2.41} \pm \textbf{0.28}$	
% Diameter Stenosis		
post procedure	8.05 ± 7.90	
at 6 months	$\textbf{12.63} \pm \textbf{11.37}$	
Acute Recoil (%)	6.4 ± 4.6	
Late Lumen Loss (mm) at 6 months	0.19 ± 0.19	
Binary Restenosis (%) at 6 months	0.0	

DESolve FIM: IVUS Results

euro

PCR

2012

*p=ns between baseline and follow-up

PCR 2012 DESolve FIM: Methodology OCT Analysis

Total NIH

[Scaffold Abluminal – (Strut Core + Lumen Area)]

Obstructive NIH [Scaffold Luminal – Lumen Area]

6-month Follow-Up

PCR 2012 **DESolve FIM: Methodology OCT Analysis**

Obstructive NIH Area [Cross-Section Level]

Obstructive NIH Thickness [Strut Level]

DESolve FIM: OCT Results

In-scaffold Cross Section Level Serial Analysis	Baseline	6-month Follow-up
	n=10 (paired)	
Mean Scaffold area (mm ²)	$\textbf{6.57} \pm \textbf{0.68}$	$\boldsymbol{6.80 \pm 0.85^{*}}$
Mean NIH Area (obstructive) (mm ²)		$\textbf{0.71} \pm \textbf{0.36}$
Mean NIH Obstruction (%)		13.16 ± 5.59
In-scaffold Strut Level Serial Analysis		
Total number of Analyzed Struts	2,984	2,575
Frequency of covered Struts/patient (%)		98.68 ± 2.44
Mean NIH Thickness over Covered Struts (mm)		$0.12\ \pm 0.04$

PCR 2012

Summary

- The DESolve FIM Study demonstrated feasibility of delivery and deployment of the DESolve[™] Coronary Scaffold System
- The DESolve scaffold provides excellent mechanical support to the vessel wall with low acute recoil (6.4%)
- Imaging results demonstrated excellent neointimal hyperplasia suppression at 6 months with an in-scaffold late lumen loss of 0.19 ± 0.19 mm with no late recoil or scaffold shrinkage
- Neointimal suppression was verified by IVUS with a low percent volume obstruction of 7.2%
- As observed by OCT, over 98% of the struts were covered by a thin layer of neointima (0.12mm) at 6 months
- Clinical event rates were low through 6 months with only one patient requiring revascularization due to a stenosis located proximal to the implanted scaffold. The scaffold itself was widely patent

Case Example

