

IV Curso "José Gabay" para Intervencionistas en Entrenamiento de ProEducar - SOLACI

"Utilidad actual de los balones coronarios. Balones con droga" Dr. León Valdivieso

Departamento de Cardiología Intervencionista-Fundación Favaloro Buenos Aires - Argentina

Conflictos de interés:

Medtronic: Proctor en intervenciones periféricas.

Ninguno relacionado a esta presentación.

Performance:

Compliance

Dilatation Force

Pushability

Trackability

Crossability

Wire movement

Inflation/deflation time

Balloon profiles

Platform:

Over the wire (OTW)

Rapid Exchange (Monorail)

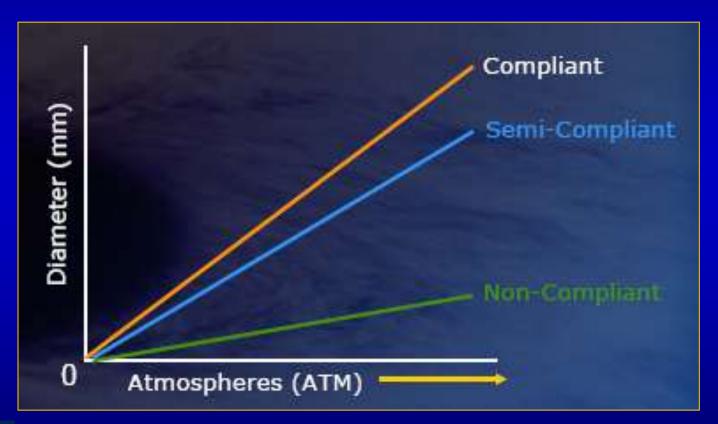
Special balloons:

Cutting

Crioplastia

Bifurcation

DEB


Es la capacidad del material del balón para estirarse o incrementar su tamaño a medida que aumenta la presión.

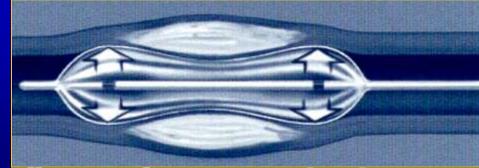
Complacencia (%) = <u>Diámetro a alta presión – Diámetro a baja presión</u> x 100 Diámetro a baja presión

Complaciente	Semi-complaciente	No complaciente
El más alto crecimiento de diámetro por ATM	Crecimiento intermedio del diámetro por ATM	El más bajo crecimiento del diámetro por ATM
Útil para POBA y para predilatación	Útil para POBA y para predilatación	Útil para postdilatación y en lesiones calcificadas

Balones complacientes y semi-complacientes

Características:

- Mejor flexibilidad y trackability.
- Mayor rendimiento para cruzar y re-cruzar.
- Durabilidad limitada.
- Incrementada variación de crecimiento longitudinal y de diámetro.
- Fuerza de dilatación limitada.


Balones complacientes y semi-complacientes

Usos:

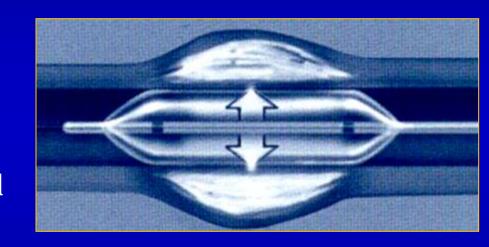
- Predilatación y/o POBA
- Permiten acceder a la lesión y preparar el vaso para stenting
- Determinan la longitud/diámetro de la lesión
- Determinan la morfología de la lesión

-Problemas:

- Efecto "hueso de perro"
- Potencial crecimiento fuera de la lesión
- Expansión no deseada del vaso

Balones No Complacientes

Características:


- Mayor durabilidad.
- Fuerza radial focalizada a la lesión/stent.
- Mínima variación de crecimiento longitudinal y de diámetro.
- Menor rendimiento para cruzar y re-cruzar.
- Limitada flexibilidad

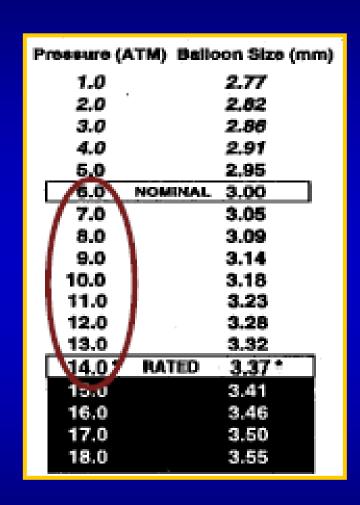
Balones No Complacientes

Usos:

- Postdilatación
- Máxima fuerza de dilatación
- Expansión focal del stent
- El más bajo crecimiento longitudinal

-Problemas:

- Material menos flexible
- Difícil llegar o acceder a la lesión.



Presión Nominal: presión requerida para que el balón infle a su diámetro de diseño.

Rated burst pressure: (de garantía) máxima presión a la que el balón infla sin ruptura.

Rango de trabajo: todo el espectro de presiones entre la nominal y la máxima.

Presión de ruptura media: presióna la cual el 50% de los balones sufren ruptura.

Dilatation Force

Es la fuerza radial ejercida por el balón sobre la lesión o sobre el stent.

Depende de:

- Presión de inflación
- Material del balón (compliance)

Pushability (Empuje o deslizamiento)

Es la capacidad del balón para transmitir la fuerza de empuje desde el extremo proximal al distal.

Depende de:

- La rigidez del shaft proximal (cuerpo del balón)
- La rigidez de la transición proximal/distal
- La rigidez del shaft distal

Trackability Trazabilidad o movimiento

Es la capacidad del balón para seguir al alambre guía a través de la anatomía vascular.

Depende de:

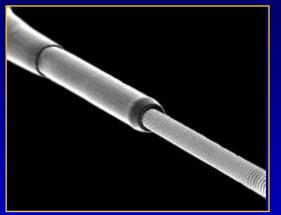
- La flexibilidad del shaft
- La flexibilidad de la punta
- Del material del balón
- El coating (recubrimiento)
- La transición del shaft
- El pérfil del shaft

Crossability Capacidad de cruce

Es la capacidad del balón para cruzar y re-cruzar una lesión, un stent o cualquier área de resistencia en el vaso.

Depende de:

- Material, pérfil y procesamiento del balón.
- Material, pérfil y procesamiento de la punta del catéter.
- Trancisión balón/punta.
- Coating (recubrimiento).
- Replegado del balón (rewrap).


Wire Movement

Es la capacidad del balón para permitir el fácil deslizamiento y rotación del alambre guía.

Inflation/deflation time

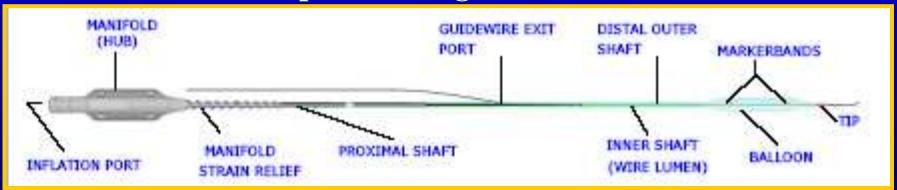
Útil en lesiones de alto riesgo (TCI no protegido, único vaso permeable, otros). Dilución del contraste.



Balloon profiles

Grosor del sistema que determina la probabilidad de cruce de lesiones muy estrechas.





Platform:

Over the wire (OTW)

Rapid Exchange (Monorail)

Balones Over The Wire (OTW)

- Requiere alambre guía de 300 cm para su intercambio.
- El alambre guía está dentro del catéter en toda su extensión.
- Intercambio más lento y laborioso (a veces dos operadores).
- Mayor tiempo de fluoroscopía.
- Permite el intercambio de alambre guía y la inyección a través del mismo.

Balones Rapid Exchange (Monorail)

- El alambre guía entra al lúmen un trayecto de 15-30 cm.
- Se intercambia con alambre guía de 180-190 cm.
- Intercambio rápido y fácil (un solo operador).
- Simpleza y velocidad.
- Menos tiempo de fluoroscopía.
- No permite el intercambio de alambre guía ni la inyección a través del mismo.

Elección del balón

Cruce:

- Maverick, Voyager, Stromer, Nimbus, Aqua.
- 1.25-1.5 de diámetro con marca central.

Romper lesiones rígidas:

- Quantum, Ranger, Raptor, Tacker, Powersail.
- 0.5 mm < al Diámetro de referencia, balones cortos.

Redilatar stents:

- Quantum, Ranger, Raptor, Tacker, Powersail.
- Diámetro del balón = Diámetro de referencia.

OTC:

- Balones de cruce + OTW

Rol de balón en la angioplastia

POBA:

Balón complaciente o semi-complaciente.

Presión mínima necesaria (habitualmente 6-8 ATM).

Insuflación prolongada. Relación balón/vaso 1:1

Lesión residual < 50% sin disección C o > (NHLBI)

Stenting:

Predilatación

Ganar acceso a la lesión y preparar la entrada del stent.

Balón 0.5 mm < al vaso.

Insuflación corta.

Postdilatación

Asegurar la expansión y aposición completa del stent Optimizar el DLM

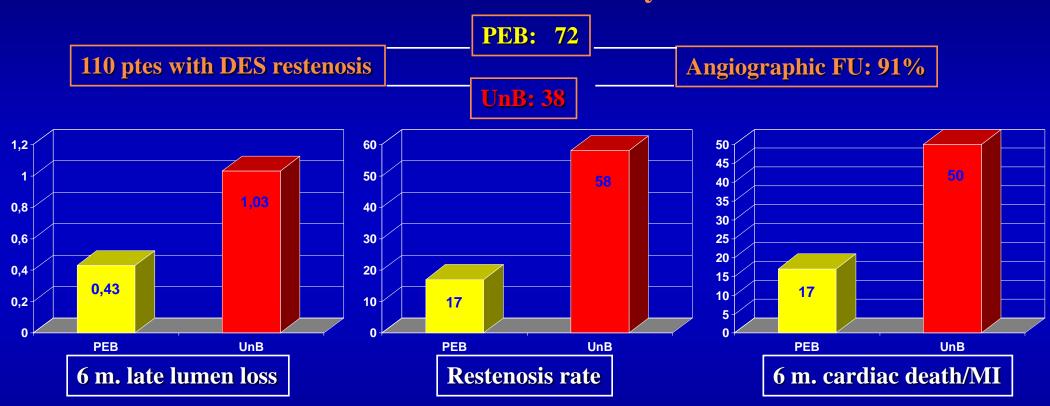
IV Curso "José Gabay" para Intervencionistas en Entrenamiento de ProEduçar FusiQLAFCIaloro

Cutting balloon

Cryoplasty balloon

- **6 ATM**
- ON a -10°C
- Apoptosis celular
- Aprobado en FSA

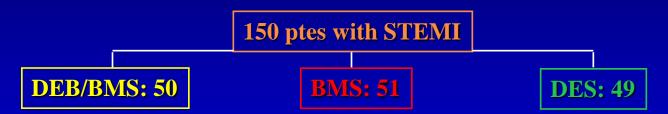
Bifurcation balloons

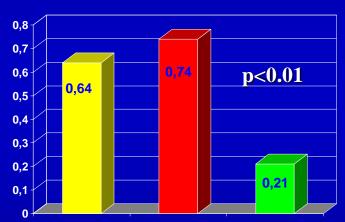


Drug Eluting Balloons

Lesiones de novo
Vasos de pequeño calibre
Lesiones inaccesible con stent
Reestenosis intrastent
Rama lateral de bifurcacion
Efecto droga en BMS

DEB - Reestenosis intrastent PEPCAD-DES study




Conclusion: Paclitaxel coated balloon angioplasty is superior to plain balloon angioplasty for treatment of DES restenosis.

Rittger et al. JACC 2012;59:1377-82

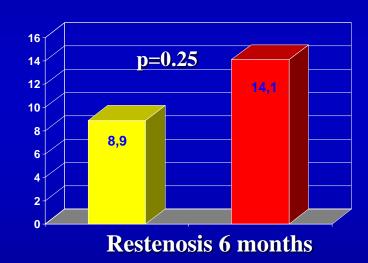
DEB - Efecto droga en BMS Drug-eluting balloon in acute MI: DEB-AMI

	DEB/BMS: 50	BMS: 51	DES: 49	р
Bin. Restenosis %	28.6	26.2	4.7	0.01
MACE %	20	23.5	4.1	0.02
Unc stent/lesion %	2.84	0	5.21	<0.01

PEP: late lumen loss

Conclusion: DEB/BMS is not superior to BMS for primary PCI. DES was superior to DEB/BMS and BMS, except for more uncovered stent struts.

Belkacemi et al. JACC 2012;59:2327-37


DEB - Vasos de pequeño calibre Drug-eluting balloon vs PES in small coronary vessels: BELLO

182 ptes with S or UA with lesions < 25 mm length in vessels < 2.8 mm

DEB: 90 bail-out stenting 20%

PES: 92

Conclusion: paclitaxel-eluting balloon lesion treatment in small vessels is associated with less late loss compared to PES.

Latib et al. JACC 2012;60:2773-80

SOLACI SBHCI 2013 IN PARTNERSHIP WITH TOT SAO PAULO-BRAZIL-JULY 24-26, 2013

Gracias por su atención

