Integrating Invasive Diagnostic Methods in Interventional Cardiology

Daniel Chamié, MD

Interventional Cardiologist, Instituto Dante Pazzanese de Cardiologia

Director, OCT Core Laboratory, Cardiovascuar Research Center

Sao Paulo, Brazil

When Do I Think of an Adjunctive Method?

1. To define which lesion to treat

- Physiology vs. Imaging
- o Defining the culprit

2. To Guide/Optimize the PCI

- o Pre-PCI
- o Post-PCI

3. To understand the mechanisms of stent failure

When Do I Think of an Adjunctive Method?

1. To define which lesion to treat

- Physiology vs. Imaging
- o Defining the culprit

2. To Guide/Optimize the PCI

- o Pre-PCI
- o Post-PCI
- 3. To understand the mechanisms of stent failure

How to Approach This Patient?

64-yo female, HTN, Hypercholesterolemia, type II Diabetes Mellitus, prior MI NSTEMI in the past 30 days, evolving w/ Stable Angina CCS II Referred for coronary angiography w/o any non-invasive functional test assessment

Syntax Score: 27

Two Goals of Tx in Pts with Stable CAD

1. Improve Symptoms and Quality of Life

• Measured by "soft endpoints" (i.e. angina/QOL scales)

2. Improve Prognosis

• Measured by "harder endpoints" (i.e. death, MI)

Multiple Studies have Shown a Powerful Relationship Between Ischemia and Survival

1,137 pts with chest pain or suspected CAD

10-yr survival in 307 pts according to CAD and Thallium-201

Vanzetto G, et al. Circulation 1999;100:1521-1527 Pavin D, et al. Eur Heart J 1997;18:69-77

Appropriateness of Revascularization and Outcomes in the UK

Prospective study of consecutive pts undergoing CAG at 3 London hospitals Before pts were recruited, 9-member expert panel rated the appropriateness of revascularization according to the RAND method assigning pts a score [1: highly inappropriate; 9: highly appropriate]

Hemingway H, et al. N Engl J Med 2001;344:645-654

In Order for Revascularization to Provide a Benefit Perceived by Patients...

 The revascularization must be able to be done safely and with high quality and/or durability.

- The revascularization has to be performed on lesions that are actually causing symptoms or a reduction in quality of life (also possible in "asymptomatic" patients).
 - Ischemia-based lesion assessment

Anatomy vs. Physiology

Vessel area: 9.1 mm² Lumen area: 2.1 mm² Plaque burden: 76.9%

Anatomy vs. Physiology

Vessel area: 6.2 mm² Lumen Area: 1.7 mm² Plaque Burden: 72.5%

Reclassification of the Patient's Risk

After FFR, Syntax Score = 5.0 PCI of the LCx

Final Angiographic Result

Relation Between Angio %DS and FFR (n=1,329)

Torino PA, et al. J Am Coll Cardiol. 2010;55:2816-2821

IVUS MLA Cutoffs for Non-LM Stenosis

	Ν	FFR	MLA	AUC	Sens	Spec	PPV	NPV	Accuracy
Takagi [1999 Circ]	51	0.75	3.0	-	83%	92%	-	-	
Briguori [2001 AJC]	53	0.75	4.0	-	92%	56%	38%	96%	64%
Ben-Dor [2012 Cardiovasc Revasc Med]	205	0.80	3.09	0.73	69%	72%	-	-	70%
Kang [2011 Circ Int]	236	0.80	2.4	0.80	90%	60%	37%	96%	68%
Kang [2012 AJC]	784	0.80	2.4	0.77	84%	63%	48%	90%	69%
Koo [2011 JACC Int]	267	0.80	2.75	0.81	69%	65%	27%	81%	67%
Gonzalo [2012 JACC]	47	0.80	2.36 IVUS	0.63	67%	65%	67%	65%	66%
Gonzalo [2012 JACC]	61	0.80	1.95 ост	0.70	82%	63%	66%	80%	72%
Stone [TCT 2013]	544	0.80	2.9	-	66.3 %	65.9 %	46.7 %	81.3 %	66%

Influence of an Epicardial Stenosis in the Coronary Blood Flow Dinamics

Daniel Bernoulli 1700-1782

Pression drops across the lesions:

- Increases with Longitudinal increase of the lesion (lesion length)
- 2. Increases with smaller lumen Area
- 3. Increases with Flow (which is not linear!)

FFR Guides You Where to Treat

- 61-yo male
- HTN, dyslipidemia, prior MI
- Stable Angina (CCS III)
- SPECT w/ anterior wall ischemia
- Diffuse disease in the LAD

FFR Also Tells You Where to Treat

<u>Original Strategy</u>: stent the subocclusive distal LAD only

I was quite happy with the angiographic result, but...

FFR After Distal LAD Stent Implantation

ZES Resolute 2.75/24 mm

Angio Control

(54) Pd mean 0,71 FFR

1,00 0,95 0,90 0,85

0,80

0,75

0,65 0.60 0,55 0,50 0,45 0.40 0,35 0.30 0,25 0,20

0,15

0,10 0,05

0,00

66 68

ZES Resolute 3.0/24 mm

Angio Control

120

110

20

FFR After Prox LAD Stent Implantation

2011 ACC/AHA/SCAI Guidelines for Percutaneous Coronary Intervention

5.4. Adjunctive Diagnostic Devices

5.4.1. FFR: Recommendation

Class IIa

 FFR is reasonable to assess angiographic intermediate coronary lesions (50% to 70% diameter stenosis) and can be useful for guiding revascularization decisions in patients with SIHD.^{12,97,484-486} (Level of Evidence: A)

See Online Data Supplement 23 for additional data regarding FFR.

The limitations of coronary angiography for determination of lesion severity have been well described. Angiography nism of stent thrombosis.495 (Level of Evidence: C)

Class III: NO BENEFIT

 IVUS for routine lesion assessment is not recommended when revascularization with PCI or CABG is not being contemplated. <u>(Level of Evidence: C)</u>

IVUS provides a unique coronary artery assessment of lesion characteristics, minimal and maximal lumen diameters, crosssectional area, and plaque area. Diagnostic uses for IVUS include the assessment of angiographic indeterminant coronary artery stenoses, determination of the mechanism of stent restenosis or thrombosis, and postcardiac transplantation surveillance of CAD.^{488,490–492,499} For left main coronary artery stenoses, a minimal lumen diameter of <2.8 mm or a

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI)[†]

 Table 33
 Recommendations for specific percutaneous coronary intervention devices and pharmacotherapy

	Class ^a	Level ^b	Ref. ^c
FFR-guided PCI is recommended for detection of ischaemia-related lesion(s) when objective evidence of vessel-related ischaemia is not available.	I	A	15, 28

However, there Are Situations When Intravascular Imaging Is Preferred

58-yo male, HTN, type II diabetic, active smoker Inferior wall STEMI in the previous 4 days → tenecteplase w/ reperfusion criteria Referred for coronary angiography

FFR has Limited Role in the Acute Phase of a Myocardial Infarction

Transient edema and microvascular dysfunction in the acute phase of an MI (≤ 5 days) precludes maximal vasodilation of the infarcted territory, restricting coronary flow, and making the pressure drop across the stenosis during maximal hyperemia to be smaller than expected → underestimation of the FFR values

Defining the Culprit

OCT has the Highest Sensitivity for Detection of Culprit Lesions

30 pts with AMI were assessed with OCT, angioscopy, and IVUS

Kubo T, et al. J Am Coll Cardiol. 2007;50:933-939

Intermediate LM Stenosis: FFR

Hamilos M, et al. Circulation 2009;120:1505-1512

Intermediate LM Stenosis: FFR

Survival

MACE

Hamilos M, et al. Circulation 2009;120:1505-1512

Intermediate LM Stenosis: FFR

LM lesion rarely appear isolated (6-9%)

In the presence of a downstream stenosis, the FFR value across a LM lesion can be underestimated, depending on:

- The severity of the distal stenosis
- Mass of myocardium at risk

IVUS Determinants of LM FFR < 0.75

Jasti V, et al. Circulation 2004;110:2831-2836

IVUS Criteria for Revascularization of Intermediate LM Stenosis – LITRO Study

De La Torre Hernandez et al. J Am Coll Cardiol 2011;58:351-358

IVUS Criteria for Revascularization of Intermediate LM Stenosis – LITRO Study

De La Torre Hernandez et al. J Am Coll Cardiol 2011;58:351-358

When Do I Think of an Adjunctive Method?

1. To define which lesion to treat

- Physiology vs. Imaging
- Defining the culprit

2. To Guide/Optimize the PCI

- o Pre-PCI
- o Post-PCI
- 3. To understand the mechanisms of stent failure

Predictors and Outcomes of ST – An IVUS Registry –

53 Pts with Stent Thrombosis 132 ± 125 h following stent deployment under IVUS guidance IVUS Findings

94% of the pts had at least 1 of these findings

Uren NG et al. Eur Heart J 2002;23:124-132

Use of Intravascular Imaging Pre-PCI

- Accurately measure vessel and lumen size to maximize stent dimensions.
- Identify proximal and distal reference segment landing zones and accurately select stent length.

Lesion Length: 22.5 mm

Use of Intravascular Imaging Post-PCI

- Maximize stent CSA relative to the vessel references.
- Full lesion coverage.
- Recognize/diagnose/treat complications

LA: 4.93 mm² Max. Diam: 2.57 mm

LA: 5.38 mm² Max. Diam: 2.64 mm LA: 5.78 mm² Max. Diam: 2.83 mm LA: 6.06 mm² Max. Diam: 2.98 mm LA: 6.42 mm² Max. Diam: 2.91 mm

Use of Intravascular Imaging Post-PCI

61 Year-old male, HTN, smoker, previous PCI. Presenting with stable angina (CCS II)

Meta-Analysis of DES Studies (n=17,570)

Compared with angiographic guidance, IVUS-guided DES implantation was associated with reduced rates of:

• Death

HR 0.58 (0.47-0.71), p<0.001

• MACE

HR 0.85 (0.76-0.95), p=0.005

Stent Thrombosis

HR 0.62 (0.46-0.83), p=0.002

Note: TLR HR 0.90 (0.73-1.11) all studies;

0.63 (0.46-1.14) propensity-adjusted studies

ADAPT-DES

Prospective, multicenter, real-world registry of 8,583 consecutive pts undergoing DES implantation to determine the frequency, timing, and correlates of early and late ST. During the index procedure, IVUS was used in 3,349 pts

	IVUS (n=3,349)	No IVUS (n=5,234)	Р
Any ST within 1 year	0.52%	1.04%	0.011
Acute	0.06%	0.04%	0.66
Subacute	0.27%	0.56%	0.05
Late	0.25%	0.48%	0.10
All-cause death/MI within 1 year	3.96%	5.35%	0.004
Cardiac death within 1 year	0.84%	1.19%	0.12
Peri-procedural MI	1.26%	1.53%	0.29
ST-related MI	0.37%	0.59%	0.16%
Non-ST-related MI	0.87%	1.58%	0.0054
Ischemia-driven TVR	2.42%	3.95%	0.0001

Witzenbichler B, et al. Circulation 2014;129:463-470

Stefano GT, et al. Int J Cardiovasc Imaging 2013;29:741-752

OCT-Guided PCI

335 pts who underwent PCI guided by angiography + OCT were compared with a paired group of another 335 pts who underwent PCI under angiography guidance only during the same period (within 30 days)

	Angiographic guidance group (n=335)	Angiographic plus OCT guidance group (n=335)	<i>p</i> -value		
In-hospital events					
Cardiac death	3 (0.9%)	2 (0.6%)	1.0		
Non-fatal myocardial infarction	22 (6.5%)	13 (3.9%)	0.118		
Events at 1-year follow-up					
Death	23 (6.9%)	11 (3.3%)	0.035		
Cardiac death	15 (4.5%)	4 (1.2%)	0.010		
Myocardial infarction	29 (8.7%)	18 (5.4%)	0.096		
Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0		
Definite stent thrombosis	2 (0.6%)	1 (0.3%)	1.0		
Cardiac death or myocardial infarction	43 (13.0%)	22 (6.6%)	0.006		
Cardiac death, myocardial infarction, or repeat revascularisation	50 (15.1%)	32 (9.6%)	0.034		

OCT-guided PCI independently associated with reduced risk of death and MI

- Multivariable logistic regression analysis: OR: 0.49 [0.25-0.960, p=0.037
- Propensity score adjustment: **OR: 0.37** [0.10-0.90], p=0.050
- Cox proportional hazard analysis: **HR: 0.51** [0.28-0.93], p=0.028

Prati F, et al. EuroIntervention.2012;8:823-829

3D-OCT: Global Stent Geometry Assessment

When Do I Think of an Adjunctive Method?

1. To define which lesion to treat

- Physiology vs. Imaging
- Defining the culprit

2. To Guide/Optimize my PCI

- o Pre-PCI
- o Post-PCI

3. To understand the mechanisms of stent failure

Understanding the Mechanisms of Stent Failure

62-yo male, HTN, dyslipidemia PCI to LAD w/ SES in Aug/2003 DAPT for 3 mos Asymptomatic for 5 years Jun/2008 → NSTEMI 54-yo male, HTN, type II DM Prior MI (May/2007); PCI to LAD w/ PES DAPT for 12 mos Asymptomatic for 3.9 years Feb/2011 → Anterior wall STEMI

Understanding the Mechanisms of Stent Failure – Case 1: Incomplete Healing

Understanding the Mechanisms of Stent Failure – Case 2: Neoatherosclerosis

Two Late DES Failures with the Same Clinical Impact; Two Different Mechanisms; Two Different Solutions

Summary

- 1. Physiology should be the first choice for determining which lesion to treat.
 - Intravascular imaging (particularly OCT) may have a role in the ACS setting in identifying the culprit lesion.
 - For assessment of intermediate LM lesions, FFR and IVUS have demonstrated good prognostic applicability.
 - Due to the inherent limitations of FFR for assessment of LM lesions, IVUSderived MLA cut-offs can be a more practical approach.
- 2. For Guidance/Optimization of PCI Results:
 - FFR has limited role.
 - IVUS and OCT can be used.
 - \circ $\,$ Large body of evidence with IVUS / Studies are ongoing with OCT.
 - OCT is more sensitive than IVUS for detection malapposition, dissections, plaque prolapse, and thrombus – clinical impact needs further studies.
- 3. For Identification of the Mechanisms of Stent Failure:
 - IVUS and OCT are useful in identifying regions of underexpansion and ISA.
 - OCT is more sensitive for ISA detection, and allows for:
 - strut level assessment strut coverage and apposition
 - qualitative assessment of NIH neoatherosclerosis, peri-strut infiltrates, etc

Conclusions

- One of the legacies of coronary angiography is to assume that one technique will always answer all questions, but that is not the current state-of-the-art.
- 2. Barriers to implementing an intravascular imaging and physiology program:
 - Cost unfortunately, the cost of these techniques can dwarf that of other materials used in PCI

• Expertise

- $\circ~$ Interpretation is not intuitive, and requires training.
- Understanding the artifacts, limitations, and confounders of the adjunct methods is critical for its proper use.
- Being aware of the limitations of relying on coronary angiography alone for specific situations

Instituto DANTE PAZZANESE de Cardiologia

Do I Need to Treat These Lesions?

62-yo male, HTN, type II DM, Dyslipidemia, Former smoker Stable Angina (CCS II) for 2 months Referred to coronary angiography w/o any non-invasive functional test

Two Lesions with the Same Anatomic Stenosis Severity, but Different Physiological Responses

IVUS Criteria of "Optimal Stent Implantation" – Drug-Eluting Stent Era –

¹Sonoda S et al. JACC 2004;43:1959-1963 / ²Doi H, et al. JACC Cardiovasc Interv 2009;2:1269-1275 / ³Song HG, et al. Catheter Cardiovasc Interv 2012; pubmed ahead of print