

REPRISE II: A Prospective Registry Study of Transcatheter Aortic Valve Replacement with a Repositionable Transcatheter Heart Valve in Patients with Severe Aortic Stenosis

Ian T. Meredith AM

MonashHeart, Clayton, Victoria, Australia

Darren Walters, Nicolas Dumonteil, Stephen Worthley, Didier Tchétché, Ganesh Manoharan, Daniel J. Blackman, Gilles Rioufol, David Hildick-Smith, Robert J. Whitbourn, Thierry Lefèvre, Rüdiger Lange, Ralf Mueller, Simon Redwood, Dominic J. Allocco, Keith D. Dawkins

on behalf of the REPRISE II Investigators

Disclosures

Ian T. Meredith AM

- Consultant Fee / Honoraria / Speaker's Bureau:
 - Boston Scientific (Significant)
 - Medtronic (Modest)
- Proctor:
 - Boston Scientific (Significant)

The REPRISE II study is sponsored and funded by Boston Scientific Corporation.

Early TAVI Devices for Severe Aortic Stenosis *Reprise Significant benefit for inoperable/high-risk patients, but...*

- Paravalvular regurgitation
 - Associated with increased mortality $\!\!\!^*$
- Valve malpositioning
 - Valve migration, embolization, ectopic deployment, TAV-in-TAV
- Stroke

2nd generation devices should

- Reduce aortic regurgitation
- Have simple, precise & atraumatic aortic/ventricular repositioning
- Allow full atraumatic retrieval

Lotus Valve System

1. Preloaded delivery system

2. Simple handle design

- 3. Deployed via controlled mechanical expansion
- 4. Central radiopaque marker to aid precise positioning
- 5. Functions early, enabling controlled deployment
- 6. Fully repositionable and retrievable
- 7. Adaptive seal designed to minimize paravalvular leak

LOTUS Valve In Situ

REPRISE II Study

REPRISE II Study Organization

PRINCIPAL INVESTIGATOR Ian T. Meredith AM, MBBS, PhD, Monash Medical Centre, Clayton, Australia

CORE LABORATORIES Angiography & CT/X-ray	Jeffrey J. Popma, MD (Director) Harvard Medical Faculty Physicians at Beth Israel Deaconess Medical Center, Boston, MA, USA
Echocardiography	Neil J. Weissman, MD (Director) MedStar Health Research Institute, Washington, DC, USA
Electrocardiography	Peter J. Zimetbaum, MD (Director) Harvard Clinical Research Institute, Boston, MA, USA
Pathology	Renu Virmani, MD (Director) CV Path Institute, Inc., Gaithersburg, MD, USA

CLINICAL EVENTS COMMITTEE Sergio Waxman, MD (IC, Chair) Carey Kimmelstiel, MD (IC)

Gregory Smaroff, MD (CT Surg) Roberto Rodriguez, MD (CT Surg) Viken Babikian, MD (Neurologist)

REPRISE II Key Inclusion Criteria

- Age ≥70 yrs
- NYHA Class ≥II
- AVA <1.0 cm² plus mean pressure gradient >40 mmHg or jet velocity >4 m/s, aortic annulus 19-27mm
- STS score ≥8% and/or high surgical risk due to frailty or comorbidities
- 2-Step patient review process: Heart Team & Case Review Committee

REPRISE II Exclusion Criteria

Key Clinical Exclusion Criteria

- AMI within 30 days
- CVA or TIA within 6 months
- Dialysis dep. or Cr >3.0 mg/dL (225.2 μmol/L)
- Cardiogenic shock or hemodynamic instability
- Any therapeutic invasive cardiac procedure within 30 days
- GI bleed within 3 months
- Life expectancy <12 months due to non-cardiac, co-morbid conditions

Key Anatomic Exclusion Criteria

- Unicuspid/bicuspid aortic valve, prosthetic valve or ring
- ≥3+ mitral or ≥3+ aortic regurgitation
- LVEF <30%
- Femoral artery lumen diameter
 - o <6.0 mm (23mm valve)</p>
 - o <6.5 mm (27mm valve)</p>

Additional REPRISE II Endpoints VARC 2 Metrics

Safety

- Cardiovascular mortality
- Stroke
- Life-threatening/disabling bleed
- Acute kidney injury (Stage 2/3)
- Coronary obstruction (periproc.)
- Major vascular complications
- Repeat procedure for valve dysfunction
- MI (periprocedural & spontaneous)
- Hospitalization for valve-related symptoms or CHF
- New permanent pacemaker
- New-onset atrial fibrillation
- Prosthetic valve endocarditis, thrombosis, migration, embolization
- Cardiac tamponade (periproc.)

Effectiveness

- NYHA class
- 5-meter gait speed (1 year vs. baseline)
- Quality of Life assessments
- Neurological assessments (NIHSS/mRS)

Valve Performance/Echocardiography

- Successful access, delivery, deployment, delivery system retrieval
- Success repositioning, if needed
- Successful valve retrieval, if needed
- Correct valve positioning
- Effective orifice area
- Mean & peak aortic valve gradients
- Peak aortic velocity
- Aortic valve regurgitation grade

REPRISE II Enrollment *120 patients between Oct 2012 & Apr 2013 at 14 sites*

	Patients	F	Patients
lan Meredith Monash Medical Centre, Clayton, Australia	19	Gilles Rioufol Hôpital Cardiologique de Lyon, Bron, France	7
Darren Walters The Prince Charles Hospital, Brisbane, Australia	19	David Hildick-Smith Royal Sussex County Hospital, Brighton, UK	5
Nicolas Dumonteil Centre Hôpital Universitaire Rangueil , Toulouse, France	14	Robert Whitbourn St. Vincent's Hospital (Melbourne), Fitzroy, Australia	4
Stephen Worthley Royal Adelaide Hospital, Adelaide, Australia	13	Thierry Lefèvre Institut Cardiovasculaire - Paris Sud, Massy, France	4
Didier Tchétché Clinique Pasteur, Toulouse, France	12	Rüdiger Lange Deutsches Herzzentrum Muenchen, Muenchen, Gerr	4 many
Ganesh Manoharan Royal Victoria Hospital, Belfast, UK	8	Ralf Mueller HELIOS Klinikum Siegburg, Siegburg, Germany	2
Daniel Blackman The General Infirmary, Leeds, UK	8	Simon Redwood Guys and St. Thomas' NHS Foundation Trust, London	, uк 1

REPRISE II Study Flow

Baseline Patient Characteristics

Comorbidities and Baseline Scores	REPRISE II (N=120)
Age (Years)	84.4 ± 5.3 (120)
Gender (Female)	56.7% (68)
STS Score (v 2.73) (%)	7.1 ± 4.6 (120)
STS Plus Score (%)	11.8 ± 8.0 (120)
euroSCORE 2011 (%)	6.9 ± 5.8 (120)
NYHA Class III or IV	75.8% (91)
Diabetes, treated	25.8% (31)
Atrial fibrillation, history	40.8% (49)

Frailty Indices	REPRISE II (N=120)	Threshold
5 Meter gait speed (sec)	9.2 ± 6.7	> 6
Max grip strength average (kg)	20.1 ± 12.8	≤ 18
Katz Index	5.7 ± 0.9	< 6
Mini-Cognitive Assessment for Dementia	3.6 ± 1.4	< 4

Baseline Echocardiographic Measurements *Reprise REPRISE II (N=120)*

Parameter*	REPRISE II
Aortic valve area (cm ²)	0.7 ± 0.2 (97)
Mean aortic gradient (mmHg)	46.4 ± 15.0 (104)
Peak aortic gradient (mmHg)	76.5 ± 23.6 (104)
LVEF (%)	54.3 ± 10.7 (61)
Mitral regurgitation (mod/severe)	11.6% (112)
Aortic regurgitation (mod/severe)	15.2% (112)

* All data are based on independent assessment from Core Laboratory Data are mean ± SD (n)

Primary Device Performance Endpoint REPRISE II (N=120)

eprise

* Value of 11.5mmHg with a 98.7%[‡] UCB of 12.6mmHg is significantly less than the performance goal (P <0.001)

^{*} Alpha-level adjustment for multiple analyses (final analysis)

⁺ Based on an expected mean of ≤15 mmHg (literature review) plus a test margin of 3mmHg

REPRISE II Mean Aortic Gradient & EOA

^{*}Repeated measures and random effects ANOVA

REPRISE II Aortic Regurgitation Over Time *Reprise Core Lab Adjudicated Data*

Post-dilation was not allowed per protocol and was not performed in any case.

Device Performance REPRISE II (N=120)

Successful access, delivery, deployment and system retrieval	100.0% (120/120)
Successful valve repositioning, if attempted (n=31)	100.0% (31/31)
Partial valve resheathing (n)	25
Full valve resheathing (n)	6
Successful valve retrieval, if attempted (n=6)	100.0% (6/6)
Aortic valve malpositioning	0.0% (0/120)

Aortic valve malpositioning	0.0% (0/120)
Valve migration	0.0% (0/120)
Valve embolization	0.0% (0/120)
Ectopic valve deployment	0.0% (0/120)
TAV-in-TAV deployment	0.0% (0/120)

REPRISE II Device Success – VARC 2

99.2% (119/120)	
100.0% (120/120)	100 Patients with Indexed EOA >0.85 cm ² /m ² (%)
95.3% (101/106)	50 - PARTNER A*
94.3% (100/106)	60.7
98.1% (104/106)	25 - 56 40 0
	REPRISE II TAVR SAVR
60.7% (51/84)	*Pibarot, JACC 2013;61:E1865
	99.2% (119/120) 100.0% (120/120) 95.3% (101/106) 94.3% (100/106) 98.1% (104/106) 60.7% (51/84)

Safety: Death & Stroke at 30 Days REPRISE II (N=120)

eprise

⁺ All patients were assessed by a neurologist before and after TAVR

* One patient withdrew consent

Additional VARC 2 Safety Endpoints REPRISE II (N=120)

+ Stent thrombosis in LAD (implanted >30d previous) with rescue PCI performed after BAV

Reprise

Pacemaker Implantation REPRISE II (N=120)

Variable	Patients
Newly implanted pacemaker	28.6% (34/119)
Baseline RBBB	17.6% (6/34)
New conduction disturbance post valvuloplasty	41.2% (14/34)
LVOT overstretch ≥10%	55.9% (19/34)
Annulus overstretch ≥10%	41.2% (14/34)
Paced rhythm at 30 days	47.1% (16/34)

Indication	Patients
3 rd degree AV block	30
New LBBB, symptomatic bradycardia	1
LBBB, EP study showing severe infranodal disease	2
Trifascicular block	1

NYHA Class Changes Over Time REPRISE II (N=120)

Summary & Conclusions REPRISE II – Lotus Valve System

Reprise

- Successful valve implantation and positioning in all 120 patients
- Primary device performance endpoint met
- Low mortality (4.2%) & disabling stroke (1.7%) at 30 days
- No embolization, ectopic valve deployment, or TAV-in-TAV
- Negligible aortic regurgitation
- Clinical event rates consistent with those reported for other valves

Results suggest the differentiated 2nd generation Lotus TAVR device will be a valuable addition for treatment of severe aortic stenosis

LOTUS Valve Clinical Program

