Two-Year Outcome of a Randomized Trial Comparing Second Generation Drug-eluting Stents Using Either Biodegradable Polymer or Durable Polymer

The NOBORI Biolimus-Eluting versus

XIENCE/PROMUS Everolimus-eluting Stent Trial (NEXT)

Masahiro Natsuaki, MD

Kyoto University Graduate School of Medicine, Saiseikai Fukuoka General Hospital

Ken Kozuma, MD; Takeshi Morimoto, MD, MPH; Kazushige Kadota, MD; Toshiya Muramatsu, MD, Yoshihisa Nakagawa, MD, Takashi Akasaka, MD; Keiichi Igarashi, MD; Kengo Tanabe, MD; Yoshihiro Morino, MD; Tetsuya Ishikawa, MD; Hideo Nishikawa, MD; Masaki Awata, MD; Masaharu Akao, MD; Hisayuki Okada, MD; Yoshiki Takatsu, MD; Nobuhiko Ogata, MD; Kazuo Kimura, MD; Kazushi Urasawa, MD; Yasuhiro Tarutani, MD; Nobuo Shiode, MD; and Takeshi Kimura, MD

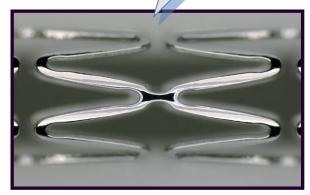
On behalf of the NEXT Investigators

Masahiro Natsuaki, MD

None.

Study Sponsor of NEXT Trial

Terumo Japan

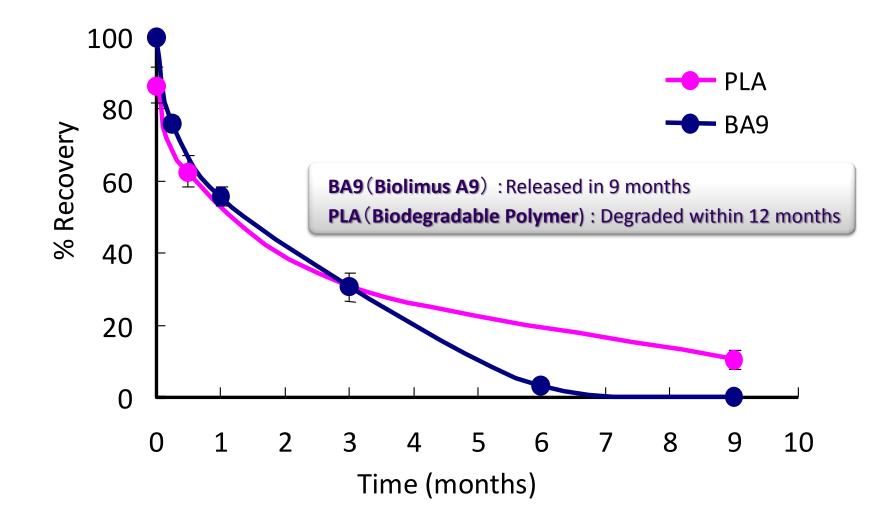

Nobori[®] Biodegradable Polymer Biolimus-eluting Stent Components

PLA Biodegradable Polymer

- Abluminal coating
- Controlled biodegradability
- Precise drug release kinetics
- Simultaneous release of drug and polymer degradation

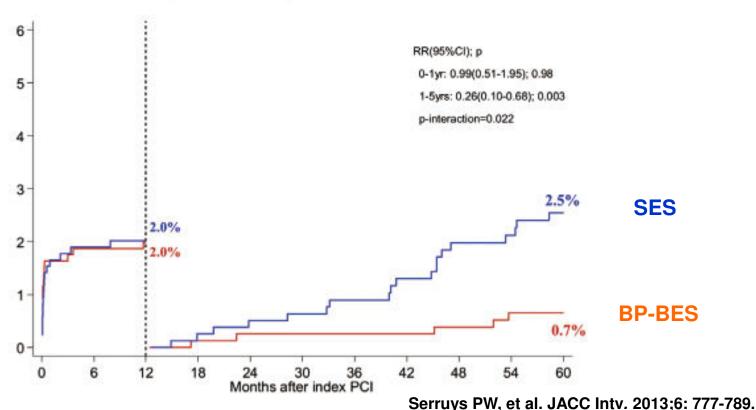
Biolimus A9™

- Anti-proliferative, antiinflammatory properties
- Highly lipophilic with optimal local tissue uptake



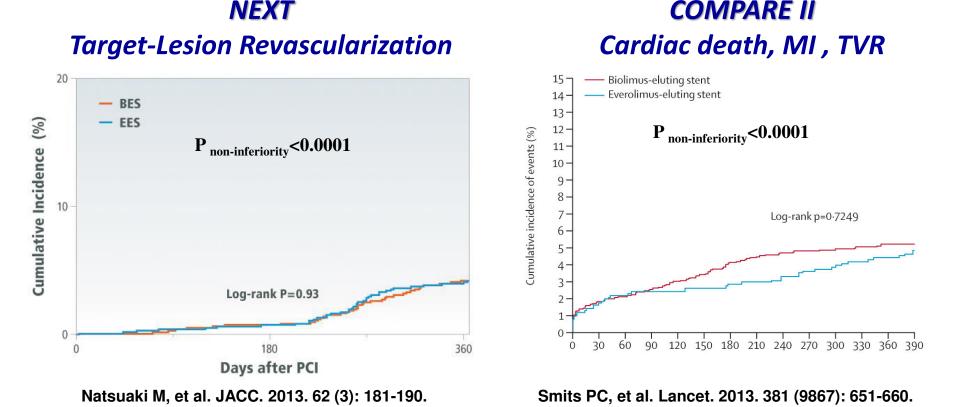
BMS Platform

- Stainless steel alloy stent
- Wide cell opening with optimal side branch access
- Innovative delivery system with hydrophilic M-coating

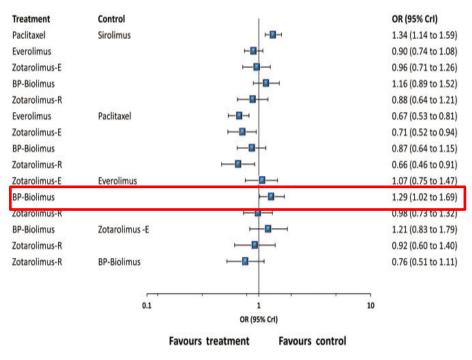

Nobori® Biolimus-eluting Stent

Biolimus A9 and PLA recovery over time on stents implanted in pig arteries

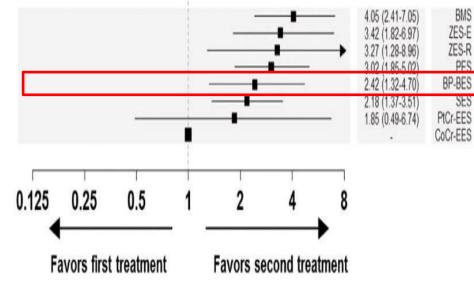
In LEADERS trial, biodegradable polymer biolimus-eluting stent (BP-BES) significantly reduced the risk for very late stent thrombosis compared with durable polymer sirolimus-eluting stent (SES).


Very Late Stent Thrombosis: BP-BES vs SES RR 0.26 (0.1-0.68)

Landmark Analyses at 0-1 and 1-5 years


However, SES is no longer used in the current clinical practice, and second-generation biocompatible durable polymer drug-eluting stent (DES) would be the more clinically relevant comparator stent for the biodegradable polymer DES (BP-DES).

NEXT and COMPARE II trial demonstrated non-inferiority of BP-BES relative to biocompatible durable polymer everolimus-eluting stent (DP-EES) in terms of the safety and efficacy endpoint at 1-year.



On the other hand, recent network meta-analyses have raised concerns on the safety of BP-BES compared with DP-EES.

Myocardial Infarction BP-BES vs. DP-EES OR 1.29 (1.02-1.69)

Definite Stent Thrombosis BP-BES vs. DP-EES OR 2.42 (1.32-4.7)

Network meta-analyses also showed that BP-DES was associated with increased mortality compared with DP-EES beyond 1-year after stent implantation. However, there is no head-to-head randomized trial of BP-DES compared with DP-EES reporting the clinical outcomes beyond 1-year after stent implantation when the advantage of BP-DES could emerge after complete polymer degradation.

Therefore, we report the interim 2-year outcome evaluating noninferiority of BP-BES relative to DP-EES.

All-cause Death beyond 1-year: BP-DES vs DP-EES RR 1.52 (1.02-2.22)


Outcome: De Treatment		Treatment	Control	Rate Ratio	95%	Crl
BP-DES	Vs. BMS	-	-	0.85	5 0.61	1.19
BP-DES	Vs. SES	-	-	0.89	0.69	1.17
BP-DES	Vs. PES	-	-	0.99	0.68	1.36
BP-DES	Vs. CoCr EES		-	1.52	2 1.02	2.22
BP-DES	Vs. PtCr EES			2.03	8 0.95	4.08
BP-DES	Vs. ZES-E	-	-	1.02	0.73	1.46
BP-DES	Vs. ZES-R	-		1.28	8 0.71	2.48
	0.10		00 95% Crl)	10.00	Bang	alore

Bangalore S, et al. BMJ 2013; 347:f6625.

NEXT Trial

(NOBORI Biolimus-Eluting versus XIENCE/PROMUS Everolimus-eluting stent Trial)

Multicenter, randomized, non-inferiority trial comparing BP-BES with DP-EES

Angiography (500 patients), IVUS/OCT (120 patients), Endothelial function (100 patients)

(Scheduled follow-up angiography by local site protocol was allowed beyond 240 days.)

NEXT Trial

Primary Endpoints and Sample Size Calculation

Primary Endpoints:

Efficacy: Any Target-lesion Revascularization at 1 year

Estimated TLR rate at 1 year:

Everolimus-eluting stent group: 6.9%

Non-inferiority margin of 3.4% and one-sided type I error of 0.025

3000 patients would yield > 95% power to detect non-inferiority.

 A total of 3200 patients were to be enrolled considering possible dropout during follow-up.

NEXT Trial Primary Endpoints and Sample Size Calculation

Primary Endpoint:

Safety: Death or Myocardial Infarction at 3-year

Estimated event rate at 3-year:

Everolimus-eluting stent group: 12.2% Non-inferiority margin of 4.3% and one-sided type I error of 0.025 3000 patients would yield 91% power to detect non-inferiority.

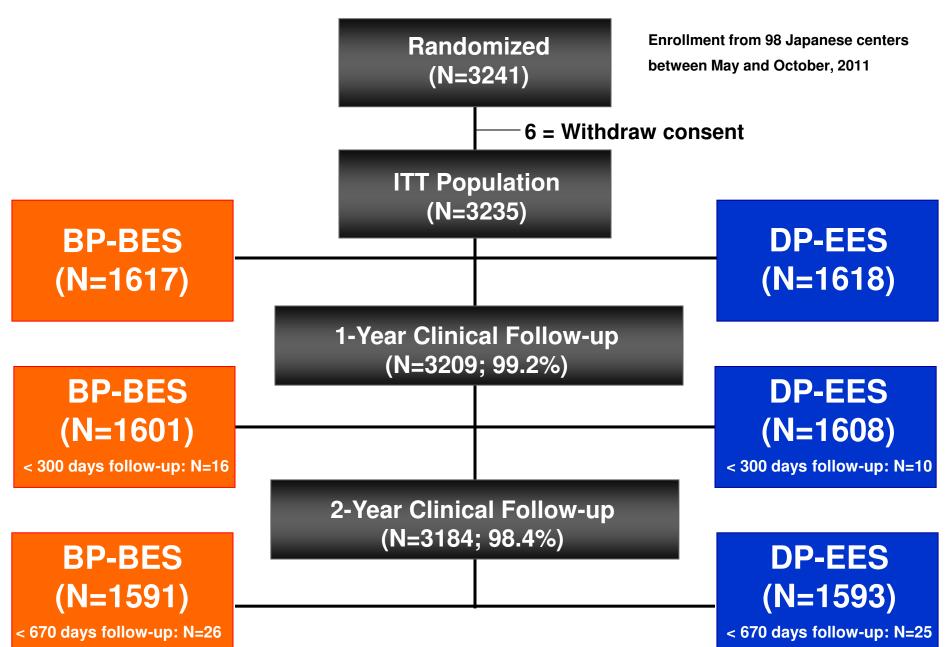
NEXT Trial: 2-Year Interim Analysis

Main Outcome Measures and Power Calculation

Safety: Death or Myocardial Infarction (MI) at 2-year

Statistical Power for Death or MI:

Actual event rate at 2-year: 7.8% Non-inferiority margin of 2.9% (2/3 of 4.3% at 3-y) and one-sided type I error of 0.006 3235 patients had 71% power to detect non-inferiority.


Efficacy: Any Target-lesion Revascularization at 2-year

Statistical Power for TLR:

Actual event rate at 2-year: 6.1%

Non-inferiority margin of 3.4% (the same at 1-y) and one-sided type I error of 0.025 3235 patients had 98% power to detect non-inferiority.

Patient Flow Chart

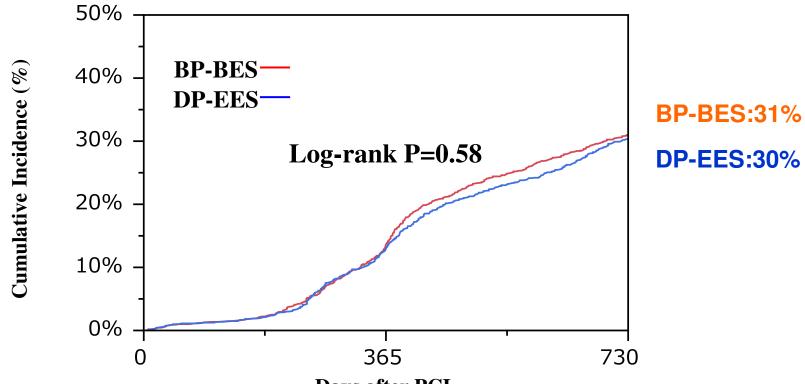
Baseline Patient Characteristics

	BP-BES	DP-EES	Р
No. of patients	1617	1618	
Age (years)	69.1 ± 9.8	69.3 ± 9.8	0.49
Age>= 75 years	31 %	34 %	0.052
Male gender	77 %	77 %	0.76
Body mass Index (kg/m ²)	24.1 ± 3.7	24.2 ± 3.5	0.55
Diabetes	46 %	46 %	0.85
Insulin-treated	10 %	11 %	0.73
Hypertension	81 %	82 %	0.81
Current smoker	19 %	18 %	0.71
Statin use	77 %	75 %	0.47
Prior PCI	50 %	51 %	0.9
Prior CABG	5.3 %	4.8 %	0.52

Baseline Patient Characteristics

	BP-BES	DP-EES	Р
No. of patients	1617	1618	
Clinical diagnosis			0.62
Acute myocardial infarction	5.1 %	4.5 %	
Unstable angina	12 %	11 %	
Stable coronary artery disease	83 %	84 %	
Prior myocardial infarction	28 %	28 %	0.81
Prior stroke	10 %	11 %	0.43
Heart failure	13 %	11 %	0.13
Hemodialysis	6.5 %	5.2 %	0.11
Peripheral vascular disease	9.7 %	11 %	0.1
Multivessel disease	51 %	51 %	0.9
SYNTAX score	<mark>10 (6-17)</mark> (N=1494)	<mark>10 (6-16)</mark> (N=1506)	0.17

Baseline Lesion Characteristics


	BP-BES	DP-EES	Р
No. of lesions	2059	2010	
Target vessel location			0.42
LMCA	2.4 %	2.3 %	
LAD	42 %	42 %	
LCx	22 %	24 %	
RCA	33 %	31 %	
Graft	0.7 %	0.9 %	
STEMI culprit lesions	3.0 %	2.9 %	0.88
Chronic total occlusion	8.6 %	7.9 %	0.39
In-stent restenosis	11 %	11 %	0.94
Bifurcation lesions	43 %	45 %	0.36
Reference vessel size <= 2.75 mm	60%	62%	0.25
Lesion length > 18 mm	43%	42%	0.51

Procedural Characteristics

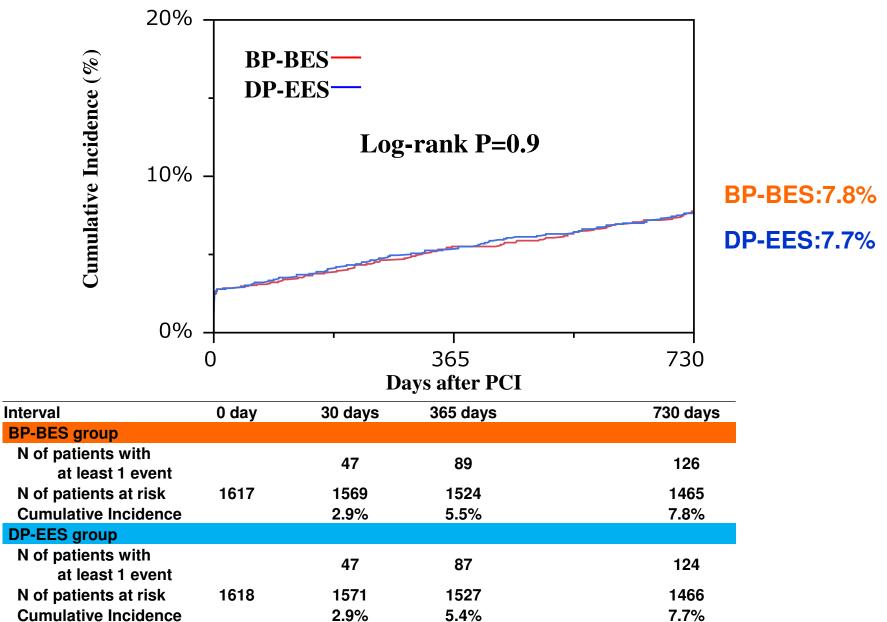
	BP-BES	DP-EES	Р
No. of lesions treated per patient	1.27 ± 0.56	1.24 ± 0.51	0.1
No. of stents			
Per patient	1.59 ± 0.84	1.6 ± 0.83	0.74
Per lesion	1.29 ± 0.56	1.32 ± 0.6	0.13
Total stent length (mm)			
Per patient	33.0 ± 20.3	32.9 ± 20.7	0.87
Per lesion	26.9 ± 15.1	27.2 ± 16.5	0.52
Stent diameter (mm)	2.88 ± 0.67	2.87 ± 0.64	0.7
Direct stenting	23 %	23 %	0.93
Maximum inflation pressure (atm)	17.2 ± 4.5	16.9 ± 4.4	0.03
Bifurcation 2-stent	1.2 %	1.0 %	0.41
IVUS use	88%	87%	0.21
Multivessel treatment	13%	11%	0.21
Staged procedures	27%	27%	0.77

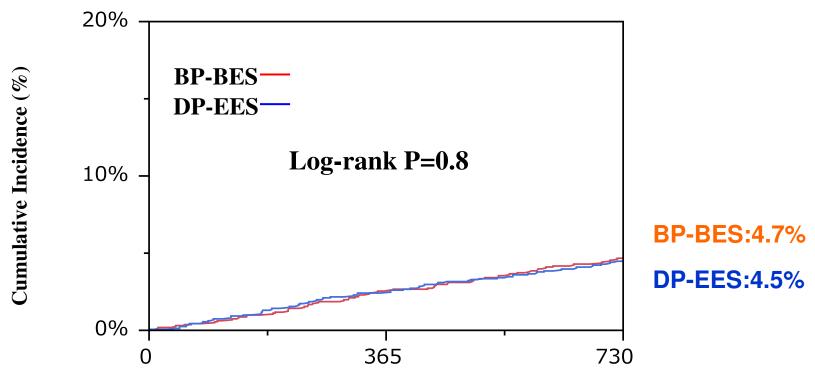
Clinical Outcomes at 2-year

Persistent Discontinuation of Dual Antiplatelet Therapy (DAPT)

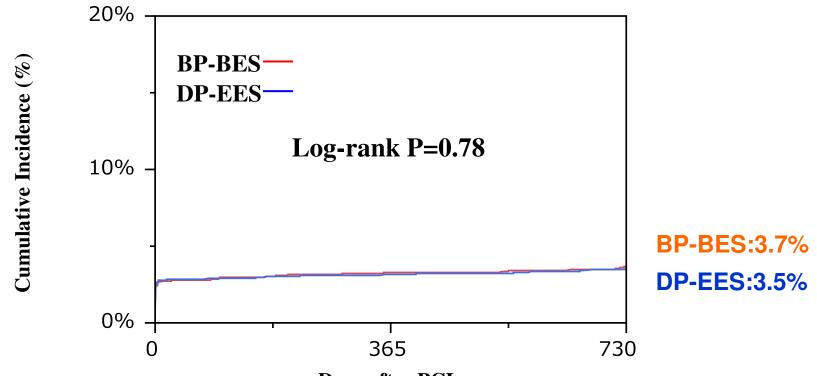
Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with discontinuation		10	215	483
N of patients at risk	1617	1598	1347	1026
Cumulative Incidence		0.6%	13.6%	31.1%
DP-EES group				
N of patients with discontinuation		11	202	471
N of patients at risk	1618	1601	1365	1033
Cumulative Incidence		0.7%	12.8%	30.4%

Non-inferiority Assessment for the Primary Safety Endpoint

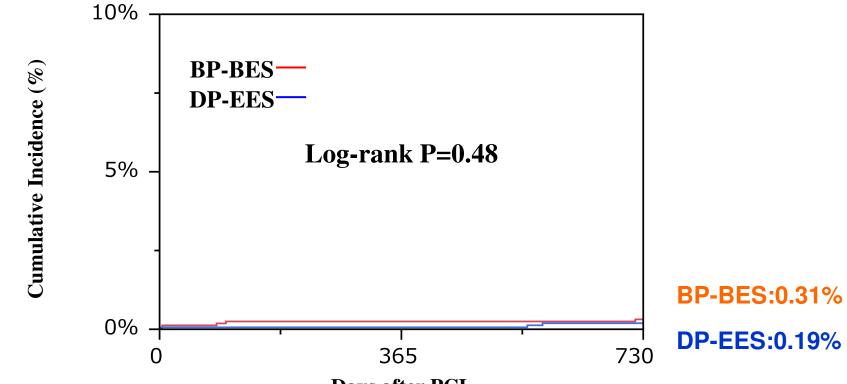

Death or Myocardial Infarction



Safety Endpoint Death or Myocardial Infarction



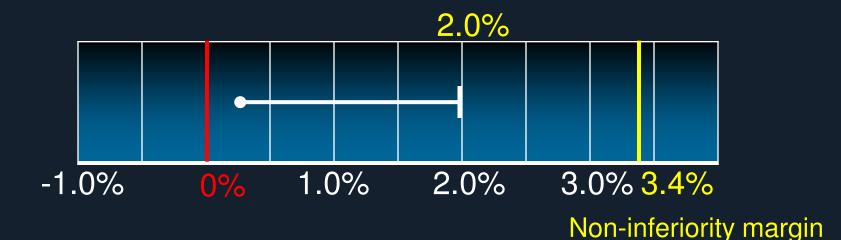
All-cause Death


Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with at least 1 event		3	42	76
N of patients at risk	1617	1613	1570	1512
Cumulative Incidence		0.2%	2.6%	4.7%
DP-EES group				
N of patients with at least 1 event		2	40	73
N of patients at risk	1618	1616	1574	1517
Cumulative Incidence		0.1%	2.5%	4.5%

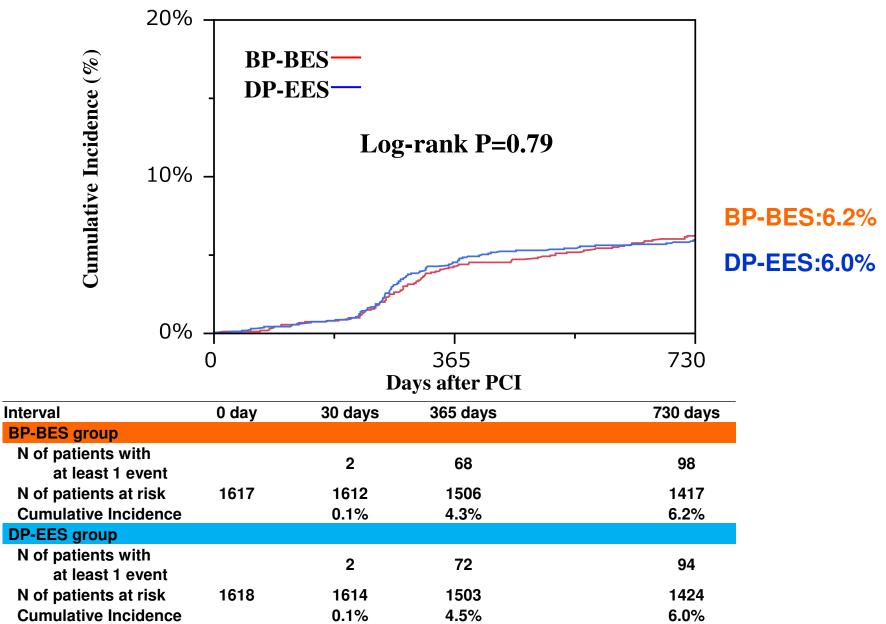
Myocardial Infarction

Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with at least 1 event		45	53	59
N of patients at risk	1617	1569	1524	1463
Cumulative Incidence		2.8%	3.3%	3.7%
DP-EES group				
N of patients with at least 1 event		46	51	56
N of patients at risk	1618	1571	1526	1463
Cumulative Incidence		2.8%	3.2%	3.5%

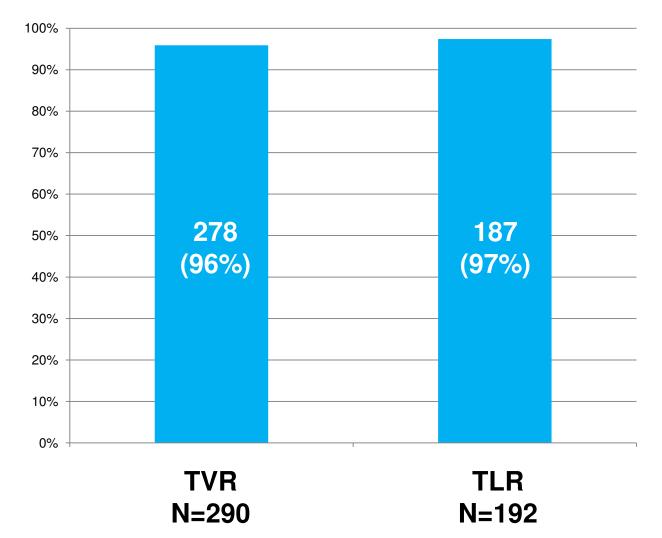
Definite Stent Thrombosis



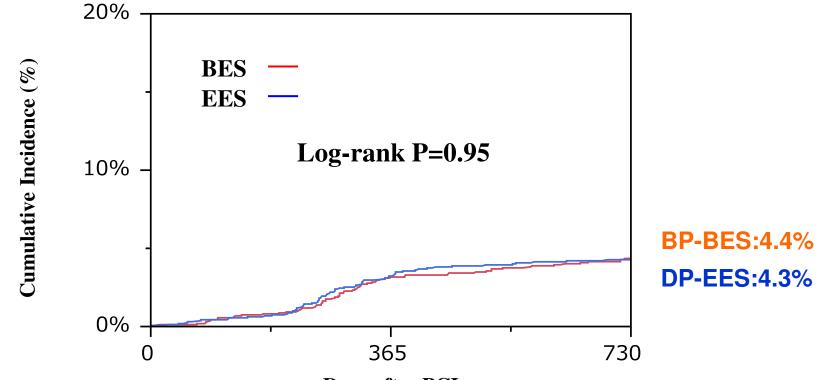
Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with at least 1 event		2	4	5
N of patients at risk	1617	1612	1569	1508
Cumulative Incidence		0.12%	0.25%	0.31%
DP-EES group				
N of patients with at least 1 event		1	1	3
N of patients at risk	1618	1616	1573	1512
Cumulative Incidence		0.06%	0.06%	0.19%


Non-inferiority Assessment for the Primary Efficacy Endpoint

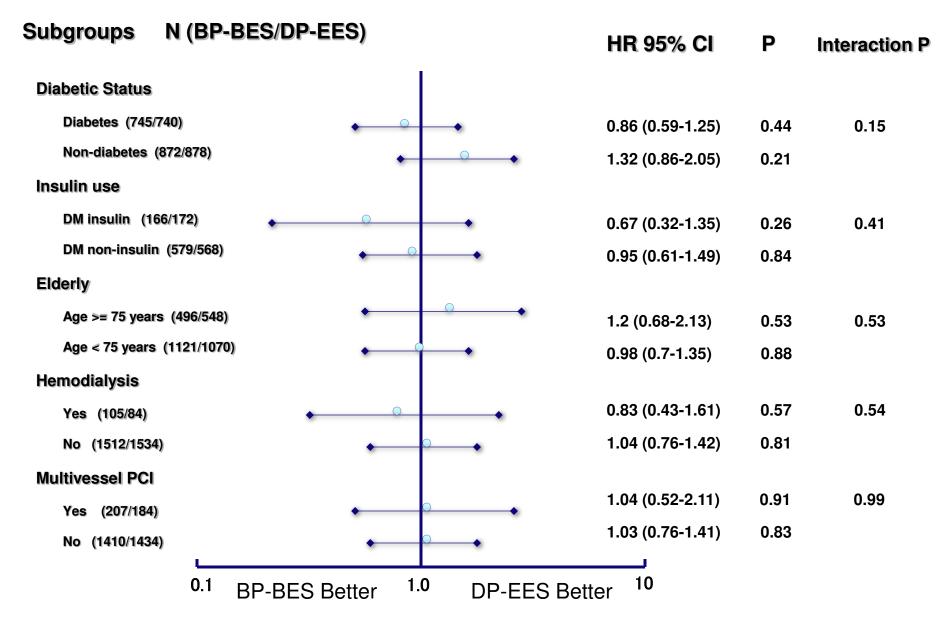
Target-Lesion Revascularization (TLR)



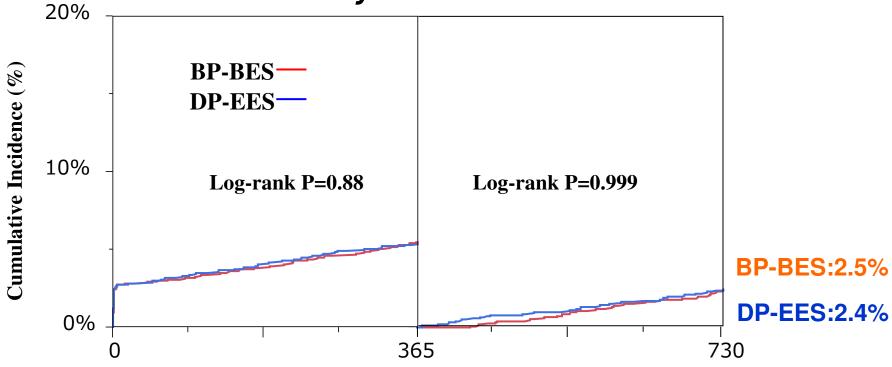
Efficacy Endpoint Target-Lesion Revascularization


Proportion of Events

Adjudicated by the Angiographic Core Laboratory

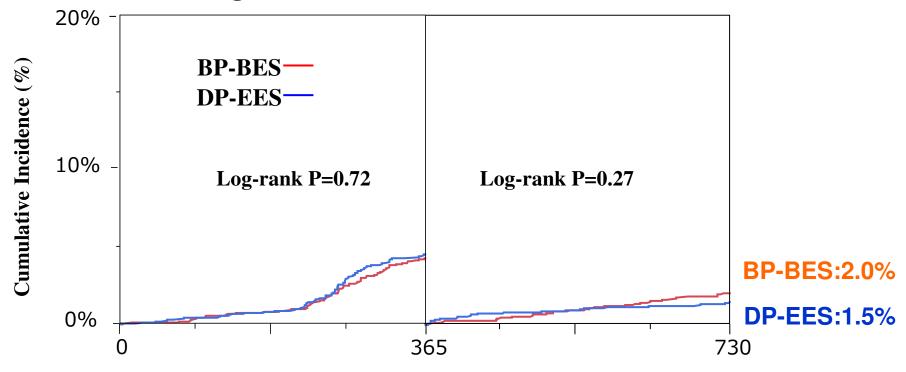

All the angiograms of patients with TVR were to be analyzed by the angiographic core laboratory in an attempt to discriminate TLR from non-TLR TVR and to identify clinically-driven TLR.

Clinically-Driven TLR


Interval	0 day	30 days	365 days	730 days
BES group				
N of patients with at least 1 event		2	50	68
N of patients at risk	1617	1612	1506	1417
Cumulative Incidence		0.1%	3.2%	4.4%
EES group				
N of patients with at least 1 event		2	51	67
N of patients at risk	1618	1614	1503	1424
Cumulative Incidence		0.1%	3.2%	4.3%

Pre-specified Subgroup Analysis for TLR BP-BES versus DP-EES

Clinical Outcomes Between 1-year and 2-year -Landmark Analysis-


Landmark Analysis at 1-year Death or Myocardial Infarction

Days after PCI

Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with at least 1 event		47	89	37
N of patients at risk	1617	1569	1524	1465
Cumulative Incidence		2.9%	5.5%	2.5%
DP-EES group				
N of patients with at least 1 event		47	87	37
N of patients at risk	1618	1571	1527	1466
Cumulative Incidence		2.9%	5.4%	2.4%

Landmark Analysis at 1-year Target-Lesion Revascularization

Days after PCI

Interval	0 day	30 days	365 days	730 days
BP-BES group				
N of patients with at least 1 event		2	68	30
N of patients at risk	1617	1612	1506	1417
Cumulative Incidence		0.1%	4.3%	2.0%
DP-EES group				
N of patients with at least 1 event		2	72	22
N of patients at risk	1618	1614	1503	1424
Cumulative Incidence		0.1%	4.5%	1.5%

Limitations

Two-year follow-up is not sufficient to compare the long-term outcome between BP-BES and DP-EES.

The advantage of polymer degradation and no permanent polymer in the vessel wall might emerge with longer-term follow-up.

Despite the all-comers trial design, the actual study population mostly included patients with stable coronary artery disease.

The current study was underpowered for the interim analysis of the safety endpoint, even if this is the largest trial comparing BP-BES with DP-EES.

Conclusions

The safety and efficacy outcomes of BP-BES remained comparable to those of DP-EES through 2-year and beyond 1-year after stent implantation.

There was no apparent signal suggesting long-term safety concerns on BP-BES compared with DP-EES.

Network meta-analyses may be hypothesis generating but require confirmation in appropriately designed head-to-head randomized controlled trials.

Longer-term follow-up is mandatory to fully understand whether BP-BES could provide any long-term benefit over DP-EES.

Participating Centers

Caress Sappro Tokeidai Memorial Hospital **Oji General Hospital** Cardio-vascular Center Hokkaido Ohno Hospital **Caress Sappro Hokko Memorial Hospital** Hokkaido Social Insurance Hospital Hokkaido Junkanki Hospital Teine Keijinkai Hospital Aomori Prefectural Central Hospital **Iwate Prefectural Central Hospital Iwate Medical University Hospital Tohoku Kousei Nenkin Hospital** Sendai Open Hospital Iwaki Kyoritsu General Hospital Fukushima Medical University Hospital Saiseikai Kurihashi Hospital Saitama Cardiovascular and Respiratory Center **Dokkyo Medical University Koshigaya** Hospital New Tokyo Hospital Juntendo University Hospital Sakakibara Memorial Hospital NTT Medical Center Tokyo The Cardiovascular Institute Hospital Mitsui Memorial Hospital **Tokyo Medical University Hospital**

Teikyo University Hospital Tokyo Women's Medical University Hospital Juntendo University Nerima Hospital Itabashi Chuo General Hospital Saiseikai Yokohama-city Eastern Hospital Kanto Rosai Hospital Yokohama Rosai Hospital Tokai University Hospital Yokohama City University Medical Center **Kitasato University Hospital** Kanazawa Cardiovascular Hospital University of Fukui Hospital Fukui Cardiovascular Center **Ogaki Municipal Hospital** Juntendo University Shizuoka Hospital Shizuoka General Hospital **Okamura Memorial Hospital** Seirei Hamamatsu General Hospital Hamamatsu Medical Center Aichi Medical University Hospital **Tosei General Hospital Toyota Memorial Hospital Fujita Health University Hospital** Japanese Red Cross Nagova Daini Hospital

Kurashiki Central Hospital Kawasaki Medical School Hospital **Hiroshima City Hospital** Fukuvama Cardiovascular Hospital **Tsuchiya General Hospital** Iwakuni Clinical Center **Chikamori Hospital Unversity Of Occupational and Environmental Health Japan** Fukuoka Wajiro Hospital **Kurume University Hospital** Kokura Memorial Hospital Kouseikai Hospital Saiseikai Kumamoto Hospital National Hospital Organization Kumamoto

Kumamoto Rousai Hospital

Mivazaki Medical Association Hospital

Tenvokai Central Hospital

National Hospital Organization Kagoshima **Medical Center**

RESEARCH LETTER

Two-Year Outcome of a Randomized Trial Comparing Second-Generation Drug-Eluting Stents Using Biodegradable or Durable Polymer

Recent network meta-analyses have raised concerns about the safety of biodegradable polymer drug-ehuting stents (BP-DES) compared with durable polymer everolimus-eluting stents (DP-EES).¹⁻³ The NOBORI Biolimus-Eluting vs XIENCE/ PROMUS Everolimus-Eluting Stent Trial (NEXT) is a 98-

center, randomized, open-label, noninferiority trial evaluating the efficacy and safety of biodegradable polymer biolimuseluting stents (BP-BES) vs DP-EES.⁴

The primary efficacy outcome of target-lesion revasculartration (TLR) at 1 year demonstrated nominferionity of BP-BES compared with DP-EES.*The primary safety outcome, a composite of death and myocardial infarction (MI), will be reported at 3 years. However, because the advantages of BP-BES could emerge beyond 1 year when polymer has fully degraded, we report the interim z-year results.

Table. Clinical Outcomes at 2 Years of Follow-up in the Intention-to-Treat Population

	No. (%) of Patients With ≥1 Event ^a			
	Biolimus-Eluting Stent (n = 1617)	Everolimus-Eluting Stent (n = 1618)	Bivariable HR (95% CI) ^b	P Value
Death or myocardial infarction	126 (7.8)	124 (7.7)	1.02 (0.79-1.30)	.003
Target-lesion revascularization				
Any	98 (6.2)	94 (6.0)	1.04 (0.78-1.38)	<.001
Clinically driven	68 (4.4)	67 (4.3)	1.01 (0.72-1.42)	.95
Target-vessel revascularization	154 (9.8)	136 (8.6)	1.14 (0.90-1.43)	.28
Coronary revascularization				
Any	285 (18.1)	269 (17.0)	1.06 (0.90-1.25)	.50
Coronary artery bypass graft surgery	12 (0.8)	20 (1.3)	0.60 (0.28-1.21)	.16
Death				
All causes	76 (4.7)	73 (4.5)	1.04 (0.76-1.44)	.80
Cardiac causes	37 (2.3)	28 (1.8)	1.32 (0.81-2.18)	.26
Myocardial Infarction				
Апу	59 (3.7)	56 (3.5)	1.05 (0.73-1.52)	.78
Q-wave	11 (0.7)	12 (0.8)	0.92 (0.40-2.09)	.83
Target vessel	50 (3.1)	49 (3.0)	1.02 (0.69-1.51)	.92
Hospitalization for heart failure	46 (2.9)	58 (3.7)	0.79 (0.54-1.16)	.24
Stroke				
Any	35 (2.2)	37 (2.3)	0.95 (0.60-1.51)	.82
Ischemic	20 (1.3)	22 (1.4)	0.91 (0.49-1.67)	.76
Hemorrhagic.	15 (1.0)	15 (1.0)	1.00 (0.49-2.07)	.99
Bleeding				
TIMI major	35 (2.3)	31 (2.0)	1.13 (0.69-1.83)	.63
TIMI minor or major	56 (3.6)	50 (3.2)	1.12 (0.76-1.64)	.56
TIMI minimal, minor, or major	102 (6.4)	108 (6.8)	0.94 (0.72-1.24)	.67
GUSTO severe	37 (2.4)	32 (2.1)	1.15 (0.72-1.86)	.55
GUSTO moderate or severe	56 (3.6)	50 (3.2)	1.12 (0.76-1.64)	.57
Definite stent thrombosis				
All patients	5 (0.31)	3 (0.19)	1.67 (0.41-8.14)	.48
Acute (0-1 d)	0	1 (0.05)		
Subacute (2-30 d)	2 (0.12)	0		
Late (31-365 d)	2 (0.12)	0		
Very Late (>365 d)	1 (0.07)	2 (0.13)		
Stent thrombosis				
Possible	22 (1.4)	18 (1.1)	1.22 (0.66-2.31)	.53
Definite or probable	5 (0.31)	3 (0.19)	1.67 (0.41-8.14)	.48
Definite, probable, or possible	27 (1.7)	21 (1.3)	1.29 (0.73-2.30)	.38

Abbreviations: HR, hazard ratio: GUSTO, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary arteries; TIMI, Thrombolyst in Myocardial Infarction. * Cumulative incidence rates were estimated using the Kaplan-Meier method. ^b The HRs and 95% CIs were estimated using the Cox proportional hazard model. Indicates noninferiority P value. The other P values indicate superiority because noninferiority analyses for the secondary outcomes were not prespecified.

JAMA Published online March 31, 2014

M Natsuaki and coauthors

Two-Year Outcome of a Randomized Trial Comparing Second-Generation Drug-Eluting Stents Using Biodegradable or Durable Polymer

Published online March 31, 2014

Available at www.jama.com and also at mobile.jamanetwork.com

jama.com