CREST, ACT 1 and Other Trials:

William A. Gray MD Director of Endovascular Services Associate Professor of Medicine Columbia University Medical Center The Cardiovascular Research Foundation

COLUMBIA UNIVERSITY MEDICAL CENTER

- Current state of carotid stenting in the US
 - Volumes
 - Outcomes

Trials in active recruitment

- ACST 2
- SPACE 2
- ACT I*

Trials seeking funding CREST 2

Tuesday, March 19, 13

Medicare carotid procedural activity

Tuesday, March 19, 13

Columbia University Medical Center

Peri-procedural outcomes (D/S/MI)

Tuesday, March 19, 13

Columbia University Medical Center

Primary endpoint ≤4 years (mean 2.5)

HR 1.11 95% CI: 0.81-1.51

Tuesday, March 19, 13

Columbia University Medical Center

Stroke prevention efficacy between

	IDE Trial	N (CAS)	Year of FDA action	Stent System Approval/ EPD 510(k) Clearance	Postmarket Surveillance Study
	ARCHeR	581	2004	Acculink PMA approval Accunet 510(k) clearance	CAPTURE (N=4,225) CAPTURE 2 (N=6,361) CHOICE (N=19,000)
	SECURITY	305	2005	Xact PMA approval Emboshield 510(k) clearance	EXACT (N=2,145) CHOICE
	SAPPHIRE	565	2006	Precise PMA approval Angioguard 510(k) clearance	CASES-PMS (N=1,493) SAPPHIRE WW (N=15,000)
	CABERNET	488	2006	Nexstent PMA approval FilterWire Carotid 510(k) clearance	None
	CREATE	419	2006 2007	Protégé Carotid PMA approval SpiderFX Carotid 510(k) clearance	CREATE PAS (N=3,500)
	MAVErIC	449	2007	Exponent PMA approval GuardWire Carotid 510(k) clearance	None
	PROTECT	320	2008	Emboshield NAV6 510(k) clearance	CHOICE
	BEACH	480	2008	Wallstent Carotid PMA approval FilterWire EZ System clearance	CABANA (N=1,097)
	EPIC	237	2008	Fibernet 510(k) clearance	None
6	EMBOLDEN	250	2009	GORE [®] Embolic Filter clearance	None
	EMPIRE	245	2009	Gore Flow Reversal 510(k) clearance	FREEDOM (planned N=5,000)

Tuesday, March 19, 13

IBIA UNIVERSITY AL CENTER

FDA and CMS approvals (limited) lead to volume expansion

Tuesday, March 19, 13

OLUMBIA UNIVERSITY MEDICAL CENTER

Volume expansion led to marked improvement in patient outcomes

COLUMBIA UNIVERSITY MEDICAL CENTER

Tuesday, March 19, 13

UNDATION

Volume expansion led to marked improvement in patient outcomes

Applying the law of syllogism
$$\left[(p \to q) \land (q \to r) \right] \to (p \to r)$$

Applying the law of syllogism $\left[(p \to q) \land (q \to r) \right] \to (p \to r)$

FDA and CMS approvals (limited) lead to volume expansion

lf

Applying the law of syllogism
$$\left[(p \to q) \land (q \to r) \right] \to (p \to r)$$

- FDA and CMS approvals (limited) lead to volume expansion
- And

lf

 Volume expansion led to marked improvement in patient outcomes

Applying the law of syllogism $\left[(p \to q) \land (q \to r) \right] \to (p \to r)$

- FDA and CMS approvals (limited) lead to volume expansion
- And

If

- Volume expansion led to marked improvement in patient outcomes
- Then:
 - FDA and CMS approvals (limited) led to marked improvement in patient outcomes

So what is left to do?

- Request of a CMS expansion of coverage in line with the available data and FDA approval
- Address the issue of asymptomatic carotid management
 - ACT I
 - ASCT 2
 - SPACE 2
 - CREST 2

Request for CMS coverage expansion

- Any effort will be based on several key guiding principles
 - Continued access to the technology for appropriate patients
 - Maintenance of the gains over the past decade
 - Quality oversight
 - Mandatory data collection through independent mechanisms (NCDR, SVS)
 - Independent accreditation (ACE, IAC)
 - Coverage with Evidence Development

Continued support for research in this area

Asymptomatic carotid disease

Tuesday, March 19, 13

Columbia University Medical Center

ACST: 10 year outcomes

The support for medical therapy without revascularization for severe asymptomatic carotid stenosis

Medical (Nonsurgical) Intervention Alone Is Now Best for Prevention of Stroke Associated With Asymptomatic Severe Carotid Stenosis. Results of a Systematic Review and Analysis

Anne L. Abbott Stroke published online Aug 20, 2009; DOI: 10.1161/STROKEAHA.109.556068

Trends in medical outcomes from Abbott analysis

COLUMBIA UNIVERSITY MEDICAL CENTER

Tuesday, March 19, 13

WASCULAR RI

Columbia University Medical Center

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

Trend sensitive to effects of early study with more complex patients

Columbia University Medical Center

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

Largest and most recent REACH study (N = 3164) published after the systematic review contradicts the review findings

Columbia University Medical Center

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

MEDIO

COLUMBIA UNIVERSITY MEDICAL CENTER

If the systematic review's analysis had adjusted for minimum % stenosis, or had included more recent studies (REACH and ACST) the trend in stroke rates would have been in the opposite direction (p = 0.55)

Columbia University Medical Center

ACST: medical treatment

COLUMBIA UNIVERSITY MEDICAL CENTER

Tuesday, March 19, 13

OVASCULAR RESEARCH

ACST outcomes for patients not on lipid Rx

ACST outcomes for patients on lipid Rx

The support for medical therapy without revascularization for severe asymptomatic carotid stenosis---

Medical (Nonsurgical) Intervention Alone Is Now Best for Prevention of Stroke Associated With Asymptomatic Severe Carotid Stenosis. Results of a Systematic Review and Analysis

Anne L. Abbott Stroke published online Aug 20, 2009; DOI: 10.1161/STROKEAHA.109.556068

Hulley S et al. JAMA 1998;280(7):605-613

Columbia University Medical Center

Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence.

Stampfer MJ, Colditz GA.

Channing Laboratory, Boston, MA 02115.

Abstract

Considerable epidemiological evidence has accumulated regarding the effect of postmenopausal estrogens on coronary heart disease risk. Five hospital-based case-control studies yielded inconsistent but generally null results; however, these are difficult to interpret due to the problems in selecting appropriate controls. Six population-based case-control studies found decreased relative risks among estrogen users, though only 1 was statistically significant. Three cross-sectional studies of women with or without stenosis on coronary angiography each showed markedly less atherosclerosis among estrogen users. Of 16 prospective studies, 15 found decreased relative risks, in most instances, statistically significant. The Framingham study alone observed an elevated risk, which was not statistically significant when angina was omitted. A reanalysis of the data showed a nonsignificant protective effect among younger women and a nonsignificant increase in risk among older women. Overall, the bulk of the evidence strongly supports a protective effect of estrogens that is unlikely to be explained by confounding factors. This benefit is consistent with the effect of estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

Stampfer MJ et al. Prev Med. 1991 Jan;20(1):47-63.

OLUMBIA UNIVERSITY IEDICAL CENTER

Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence.

Stampfer MJ, Colditz GA.

Channing Laboratory, Boston, MA 02115.

nonsignificant protective effect among younger women and a nonsignificant increase in risk among older women. Overall, the bulk of the evidence strongly supports a protective effect of estrogens that is unlikely to be explained by confounding factors. This benefit is consistent with the effect of estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

nonsignificant protective effect among younger women and a nonsignificant increase in risk among older women. Overall, the bulk of the evidence strongly supports a protective effect of estrogens that is unlikely to be explained by confounding factors. This benefit is consistent with the effect of estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

Tuesday, March 19, 13

Hulley S et al. JAMA 1998;280(7):605-613

Columbia University Medical Center

Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence.

Stampfer MJ, Colditz GA.

Channing Laboratory, Boston, MA 02115.

Abstract

Considerable epidemiological evidence has accumulated regarding the effect of postmenopausal estrogens on coronary heart disease risk. Five hospital-based case-control studies yielded inconsistent but generally null results; however, these are difficult to interpret due to the problems in selecting appropriate controls. Six population-based case-control studies found decreased relative risks among estrogen users, though only 1 was statistically significant. Three cross-sectional studies of women with or without stenosis on coronary angiography each showed markedly less atherosclerosis among estrogen users. Of 16 prospective studies, 15 found decreased relative risks, in most instances, statistically significant. The Framingham study alone observed an elevated risk, which was not statistically significant when angina was omitted. A reanalysis of the data showed a nonsignificant protective effect among younger women and a nonsignificant increase in risk among older women. Overall, the bulk of the evidence strongly supports a protective effect of estrogens that is unlikely to be explained by confounding factors. This benefit is consistent with the effect of estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

Stampfer MJ et al. Prev Med. 1991 Jan;20(1):47-63.

Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence.

Stampfer MJ, Colditz GA.

Channing Laboratory, Boston, MA 02115.

Abstract

nonsignificant protective effect among younger women and a nonsignificant increase in risk among older women. Overall, the bulk of the evidence strongly supports a protective effect of estrogens that is unlikely to be explained by confounding factors. This benefit is consistent with the effect of estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

estrogens on lipoprotein subfractions (decreasing low-density lipoprotein levels and elevating high-density lipoprotein levels). A quantitative overview of all studies taken together yielded a relative risk of 0.56 (95% confidence interval 0.50-0.61), and taking only the internally controlled prospective and angiographic studies, the relative risk was 0.50 (95% confidence interval 0.43-0.56).

Stampfer MJ et al. Prev Med. 1991 Jan;20(1):47-63.

Conclusions.—During an average follow-up of 4.1 years, treatment with oral conjugated equine estrogen plus medroxyprogesterone acetate did not reduce the overall rate of CHD events in postmenopausal women with established coronary disease. The treatment did increase the rate of thromboembolic events and gallbladder disease. Based on the finding of no overall cardiovascular benefit and a pattern of early increase in risk of CHD events, we do not recommend starting this

Hulley S et al. JAMA 1998;280(7):605-613

Columbia University Medical Center

Original Contributions

Randomized Trial of Estrogen Plus Progestin for Secondary Prevention of Coronary Heart Disease in Postmenopausal Women

Hulley S et al. JAMA 1998;280(7):605-613

OLUMBIA UNIVERSITY IEDICAL CENTER

Tuesday, March 19, 13

Columbia University Medical Center

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
 - What is "Best Medical Therapy"?
 - What BP med? What target BP?
 - Which lipid med? What target lipid levels? For LDL? For HDL?
 - How do we improve smoking cessation rates?

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
 - What is "Best Medical Therapy"?
 - What BP med? What target BP?
 - Which lipid med? What target lipid levels? For LDL? For HDL?
 - How do we improve smoking cessation rates?

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
 - What is "Best Medical Therapy"?
 - What BP med? What target BP?
 - Which lipid med? What target lipid levels? For LDL? For HDL?
 - How do we improve smoking cessation rates?
- Measures and assurances of compliance and side effect issues
 - NHANES reports <25% patients achieve BP goal</p>

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
 - What is "Best Medical Therapy"?
 - What BP med? What target BP?
 - Which lipid med? What target lipid levels? For LDL? For HDL?
 - How do we improve smoking cessation rates?
- Measures and assurances of compliance and side effect issues
 - NHANES reports <25% patients achieve BP goal</p>

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
 - What is "Best Medical Therapy"?
 - What BP med? What target BP?
 - Which lipid med? What target lipid levels? For LDL? For HDL?
 - How do we improve smoking cessation rates?
- Measures and assurances of compliance and side effect issues
 - NHANES reports <25% patients achieve BP goal</p>
- Randomized data showing equivalence or superiority to revascularization in asymptomatic severe carotid stenosis

MEDICAL CENTER

FOUNDATION

Perspectives on CEA, CAS and Optimal Medical Therapy

<u>da</u> ;

Columbia University Medical Center

Perspectives on CEA, CAS and Optimal Medical Therapy

- All are improving
- The judicious and selective use of these therapies can result in overall improved patient outcomes:
 - Fewer strokes, fewer MI's
 - Less disability and less CV mortality
- CEA and CAS and medical therapy have complementary, not competitive roles in the patient requiring revascularization

ACT I

- After completing randomization of 1450/1650 asymptomatic patients 3:1 CAS:CEA, the trial has been stopped
 - No safety concerns
- Significant and valuable data set with a primary endpoint of 1 year
- Opportunities to add to or combine with other data sets (CREST, etc.) for even more robust analysis

ACST 2

- Oxford/UK based multicenter/multinational effort
- 5000 patient trial randomizing asymptomatic patients 1:1 CEA:CAS
- Currently >1100 patients enrolled
- Early data are available on ~682 patients

ACST 2: interim blinded outcomes

Columbia University Medical Center

ACST 2: interim blinded outcomes

Major events within 30 days	
(none were in people who did not have their allocated	Total
procedure)	(n=682)
1) Unrefuted stroke within 30 days, by severity of	
worst such stroke	
Fatal	2
Disabling	4
Non-disabling (excludes TIA)	14
Total	20
2) Unrefuted MI within 30 days, by outcome	
Fatal	1
Non-fatal	3
Total	4
3) Vascular event within 30 days that (eventually)	
caused death, or disabling stroke within 30 days	7 (1.0%)
4) Any unrefuted stroke, MI or related death within 30	
days	24 (3.5%)
5) Death in 30 d probably unrelated to stroke, MI or	
procedure	1

Columbia University Medical Center

ACST 2: interim blinded outcomes

Major events within 30 days	
(none were in people who did not have their allocated	Total
procedure)	(n=682)
 Unrefuted stroke within 30 days, by severity of 	
worst such stroke	
Fatal	2
Disabling	4
Non-disabling (excludes TIA)	14
Total	20
2) Unrefuted MI within 30 days, by outcome	
Fatal	1
Non-fatal	3
Total	4
3) Vascular event within 30 days that (eventually)	
caused death, or disabling stroke within 30 days	7 (1.0%)
4) Any unrefuted stroke, MI or related death within 30	
days	24 (3.5%)
5) Death in 30 d probably unrelated to stroke, MI or	
procedure	1

Columbia University Medical Center

Tuesday, March 19, 13

CARDIOWASCULAR RESEARCH

F O

SPACE 2 Number of carotid procedures in Germany

Tuesday, March 19, 13

Columbia University Medical Center

SPACE 2

- Investigator-initiated prospective, randomized, multicenter trial
- Three arms: Optimal medical treatment (OMT) CEA + OMT CAS + OMT
- ~100 certified centers
- N=3,640 patients with a follow-up of five yrs. (duration 8-9 yrs.)
- Funding by the German Ministry for Education and Research (BMBF, about 4 Mio €)

<u>a</u>

Columbia University Medical Center

CREST 2: Primary Aim

 To assess if contemporary REVASCULARIZATION, either CAS or CEA, provides an incremental benefit of 1.2% annual risk reduction over contemporary medical therapy

CREST 2: Primary outcome

• The primary outcome will be the classical composite of stroke or death within 30 days of enrollment or ipsilateral stroke up to 4-years thereafter.

DIUMBIA UNIVERSITY EDICAL CENTER
CREST 2: Key design elements

- Sample size 950 participants at approximately 70 centers.
- Statistical power will be ~ 90% to detect a 4.8% treatment difference (1.2% per year)

olumbia University edical Center

Tuesday, March 19, 13

After randomization, the CAS and CEA groups imbedded in the REVASC and MEDICAL arms will allow randomizedprotected comparisons of CEA-intended and CASintended patients to the MEDICAL patients.

...and "working groups" to study

- Plaque characteristics as predictors of risk- BK Lal, MD, University of Maryland
- MRI- treatment differences— *Michael Hill, MD, University of Calgary*
- **Cognitive** treatment differences– David Knopman, MD, Mayo Clinic and Ronald Lazar, PhD, Columbia
- QOL and costs— David Cohen, MD, Saint Luke's Mid America Heart and Vascular Institute
- **CMS and other databases** to enrich outcomes— Judith Lichtman, PhD, Yale
- Hemodynamic changes by treatment and impact on outcomes– Randy Marshall, MD, Columbia

Tuesday, March 19, 13

Initial NIH/NHLBI Review

- Moderate/major concerns:
 - The combined CEA and CAS arm:
 - ?whether CAS had established efficacy in reducing stroke and death in this population
 - Suggested a change in sample size that would allow independent assessment of each intervention vs. medical Rx
 - One-sided superiority for the primary hypothesis in a Phase III trial not adequately justified
 - Justification for the 4 year event rate in the medical group was limited, and would affect sample size significantly
 - SAMMPRIS intensive medical therapy is not "real world" and that compliance was not adequately addressed
 - Cognitive assessment was not included and should be, given adverse cognitive effects of statins

Tuesday, March 19, 13

Summary

- The next wave of CAS testing will be dedicated less to CAS vs. CEA, and more to addressing the question as to the role of revascularization for patients on OMT
- Difficult trials to enroll, and will be several years before outcomes will be known

Tuesday, March 19, 13