

Long-term Outcome of Biodegradable Compared to Durable Polymer Drug-Eluting Stents and Bare Metal Stents – Main Results of a Prospective Randomized Trial

- the BASKET PROspective Validation Examination II-

(BASKET-PROVE II)

C.Kaiser, S. Galatius, M. Pfisterer on behalf of the BASKET-PROVE II Investigators

supported by the Basel Cardiovascular Research Foundation

no industry involvement in design, analysis or interpretation of data

BASKET-PROVE II

BASKET-PROVE II Organigram

(number of patients randomized)

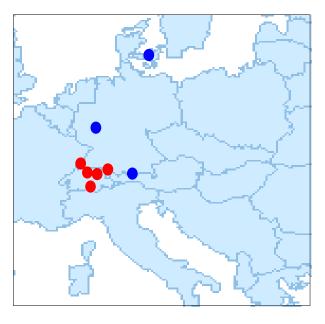
University Hospital Basel, Switzerland (n=398)

R. Jeger

Gentofte University Hospital, Copenhagen, Denmark (n=522)

S. Galatius

University Hospital Innsbruck, Austria (n=331)


H. Alber

Elisabeth-Krankenhaus Essen, Germany (n= 331)

C. Naber

Independent CEC

P.Rickenbacher

Co-Pl. C. Kaiser Co-Pl: M. Pfisterer

Circulation

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Online November 19th, 2014!

Triemli Hospital Zürich, Switzerland (n=229) F. Eberli

Cardiocentro Lugano, Switzerland (n=160) G.Pedrazzini

State Hospital St. Gallen, Switzerland (n=114) H. Rickli

State Hospital Aarau, Switzerland (n=104)

A. Vuilliomenet

Independent Statistics CTU University Basel

Background

- ⇒ Promise of biodegradable-polymer drug-eluting stents (BP-DES) to be as:
 - effective as 2nd generation durable-polymer drug-eluting stents (DP-DES)
 - safe >1 year as bare-metal stents (BMS),
 i.e. very late stent thrombosis (VLST) due to persistent polymers should no longer appear

Aims

- ⇒ To compare the long-term performance of a BP-DES to
 - the most widely used 2nd generation DP-DES
 - a last-generation thin-strut coated BMS

Study Design I

Inclusion: 2'291 patients in need of >3.0mm stents

irrespective of clinical indication for PCI/stent

(April 2010 until May 2012)

Exclusions: shock, in-stent restenosis, stent thrombosis, unprotected LM or SVG, planned surgery < 12 months, oral anticoagulation / increased bleeding risk, history of TIA or stroke, stents >4mm, no compliance

Randomization 1:1:1 to

Biolimus-eluting BP-DES (Nobori ®)

VS

Everolimus-eluting DP-DES (Xience-PRIME ®)

VS

thin-strut coated Cobalt-Chromium BMS (Prokinetik ®)

Study Design II

Assumptions: - 2-year primary EP for DP-DES: 7.6% (BASKET-PROVE, NEJM 2010)

- Non-inferiority margin: 3.8%

Sample Size: - 2x800 patients (incl. 10% lost-to-follow-up) for non-inferiority,

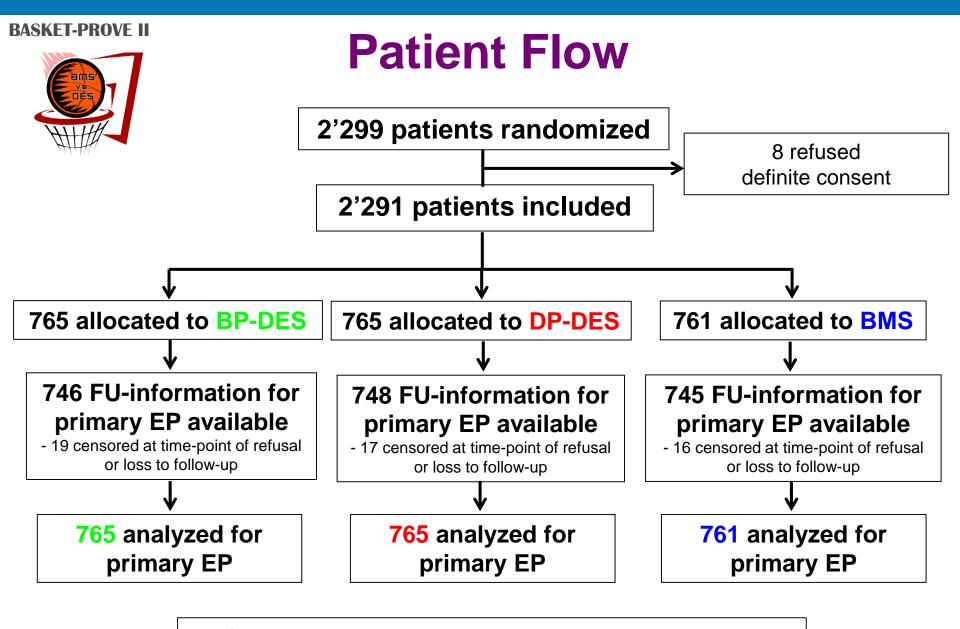
power 80%, at one-sided type I error of 0.05

DAPT : - ASS and Prasugrel for all patients

12 months after DES or ACS, 4 weeks after elective BMS

Prasugrel: 60mg loading-dose, 10mg daily (5mg >75 years or <60kg)

Follow-up: - 24 months, angio for clinical indication only


Endpoints: -1° EP: *Efficacy*: MACE (cardiac death/MI/TVR) within 2 years

a) BP-DES vs DP-DES (non-inferiority)

b) **BP-DES** vs **BMS** (superiority)

- 2° EP: Safety: = definite/probable ST/ MI/cardiac death

- late = > 1 year

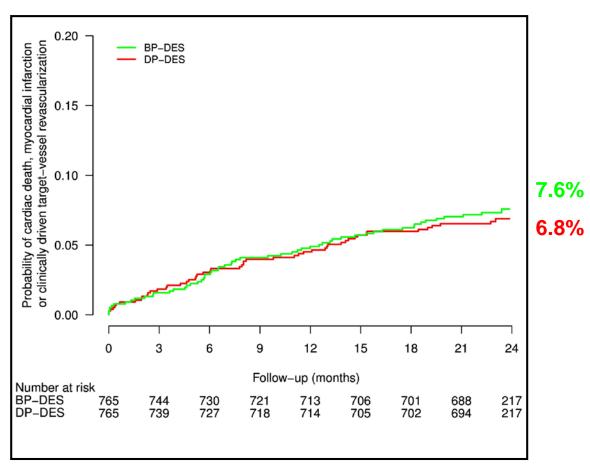
- Survival status known after 2 years: 98.5%
- Complete follow-up after 2 years: 97.7%

Baseline Characteristics

Patients n	BP-DES 765	DP-DES 765	BMS 761
Age (years)	62±11	62±11	63±11
Diabetes (%)	21	17	19
Hypertension (%)	66	66	67
Hypercholesterol. (%)	65	63	62
Current Smoker (%)	35	35	37
Prior MI (%)	9	9	10
Prior PCI (%)	13	12	15
Prior CABG (%)	3	3	2
Stable Angina (%)	36	35	39
UA/NSTEMI (%)	34	35	33
STEMI (%)	30	29	27

(No significant differences between groups)

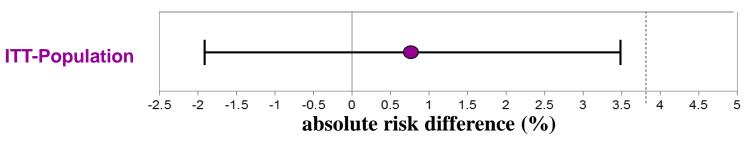
Baseline Vessel Disease and Intervention


	BP-DES 765	DP-DES 765	761
Patients (n)			
MV- disease (%)	37	39	39
LAD treated (%)	62	63	65
Bifurcations treated (%)	4	6	6
CTO treated (%)	4	4	3
GP IIb/IIIa blockers (%)	12	13	12
# of stented lesions/patient	1.2±0.5	1.3±0.6	1.3±0.5
# of stents/patient	1.5±0.8	1.5 ± 0.9	1.5±0.8
total stent length/pat. (mm)	26±17	27±18	25±16
Angiographic success (%)	96	96	95

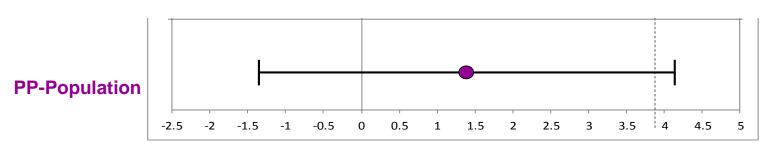
(No significant differences between groups)

Primary Endpoint

cardiac death/MI/TVR BP-DES versus DP-DES



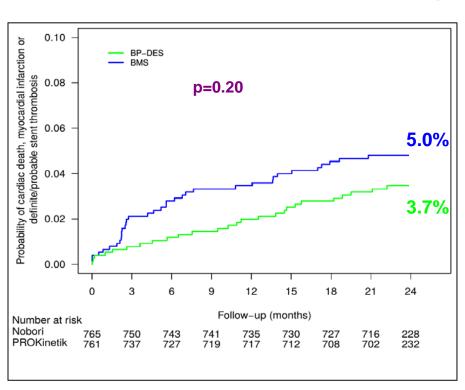
HR 1.11; CI 0.77-1.62, p=0.58

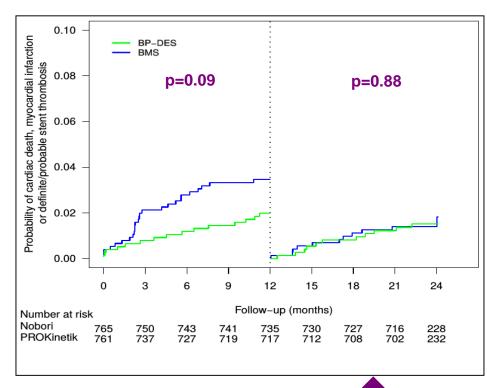


Non-Inferiority Analysis

BP-DES versus **DP-DES**

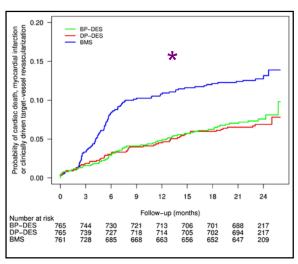
→ Intention to treat: absolute risk difference 0.75% (95%CI -1.93% to 3.50%, p for non-inferiority: 0.04)


absolute risk difference (%)


- → Per protocol: absolute risk difference 1.41% (95%CI 1.33% to 4.15%, p for non-inferiority: 0.09)
 - Difference due to exclusion of 6 events in patients with protocol violations:
 4 due to DAPT violations, 2 no stent

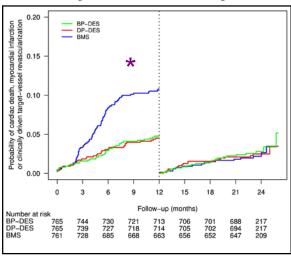
Key Safety Secondary Endpoint

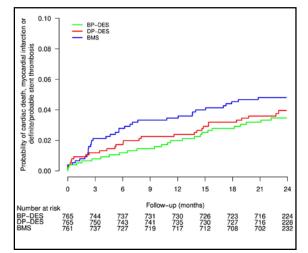
Cardiac Death / MI / def. or prob. ST BP-DES versus BMS


HR: 0.72; CI 0.44-1.18

No difference in late safety

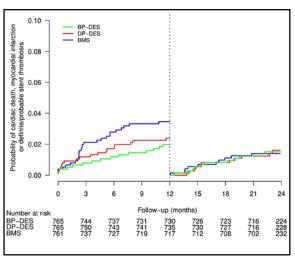
Comparison of all 3 Stent Groups Early vs Late Events


overall



Efficacy

card death/MI/TVR



Safety

card death/ MI/def/prob ST

* p<0.001

Discussion

- ⇒ BP-II was powered for efficacy, the primary EP (i.e. non-inferiority), not for late safety
 - >20'000 patients needed to prove significant differences in VLST
- ⇒ The non-inferiority margin was 3.8%
 - In accordance with previous trials
- ⇒ All patients were treated with *prasugrel*-based DAPT
 - May question the generalizability of the results on VLST and ischemic endpoints (separate analysis under review)
- ⇒ Results apply for patients with *large vessel* stenting
 - Selected for low TVR-, high MI/death-risk

Conclusions and Implications

- ⇒ By intention-to-treat, biolimus-eluting BP-DES were non-inferior to everolimus-eluting DP-DES after 2 years in a real-world population of patients in need for large-vessel stenting.
- ⇒ Both DES were *superior* in efficacy (TVR **I**) to thin-strut coated BMS.
- ⇒ There was *no evidence* for a better safety, particularly a lower very late stent thrombosis rate, for BP-DES beyond 1 year.
- ⇒ Findings *challenge* the concept that polymers should be key in the perceived late deficiency (VLST ♣) of DP-DES.