When to proceed with multivessel PCI

Ciudad de México, SOLACI Fellows Course 2012

André Kokis MD, FRCPC, FACC
Head of Interventional Cardiology
Centre Hospitalier de l'Université de Montréal
Montréal, Canada

- History
- Guidelines
- Newer trials
- Newest retrospective study
- Conclusion

Over past 20 years 12 trials compared PCI to CABG

- BARI
- ERACI II
- RITA
- GABI
- MASS 2
- SoS
- EAST
- CABRI
- AWESOME
- ARTS 1 & ARTS 2
- SYNTAX

Many historical: POBA vs CABG

Randomized Trials of PTCA vs CABG for Treatment of Multivessel Coronary Artery Disease

	Randomized	Follow-up	In-Hospital Additional Nonrandomized CABG	Repeat Revascula Follow-u		Cumulativ	e Mortality
Study	Patients, n	Duration, y	(PTCA Group Only)	PTCA Group	CABG Group	PTCA Group	CABG Group
RITA ⁷	1011	2	5.9% (emergency, 4.3%)	38% (CABG, 22.5%)	11%	3.9%	2,7%
GABI ⁸	359	1	8.2% (emergency, 2.7%)	44% (CABG, 17.6%)	6%	2.2%	5.1%
EAST ⁹	392	3	10.1% (emergency, 9.6%)	54% (CABG, 18.2%)	13%	3.5%	2.1%
CABRI ¹⁰	1054	1	5% (emergency, 3.9%)	37% (CABG, 16%)	6.5%	3.9%	2.7%
BARI ¹¹	1792	5	6.3% (emergency, 6.3%)	54.5% (CABG, 31.3%)	8%	13.7%	10.7%

Background (II)

Long-Term Safety and Efficacy of Percutaneous Coronary Intervention With Stenting and Coronary Artery Bypass Surgery for Multivessel Coronary Artery Disease

A Meta-Analysis With 5-Year Patient-Level Data From the ARTS, ERACI-II, MASS-II, and SoS Trials

Joost Daemen, MD; Eric Boersma, PhD; Marcus Flather, MBBS; Jean Booth, MSc; Rod Stables, MA, DM, FRCP; Alfredo Rodriguez, MD; Gaston Rodriguez-Granillo, MD, PhD; Whady A. Hueb, MD; Pedro A. Lemos, MD, PhD; Patrick W. Serruys, MD, PhD

- A patient level meta-analysis of CABG vs BMS trials (ARTS, SoS, ERACI-II and MASS-II) demonstrated:
 - PCI with stenting had similar rates of death and combined safety (death/stroke/MI) to that of CABG
 - Repeat revascularization rates were increased in PCI patients leading to increased overall MACCE rates at 5 years

Circulation 2008; 118: 1146-1154

TCT - 14 October 2008 - Slide

ARTS II

5 year results: JACC March 2010

Outcome	Sirolimus-eluting stent in ARTS II (n=607)	CABG in ARTS I (n=602)	Bare-metal stent in ARTS I (n=600)	р
Death	5.4	7.1	7.8	NA
Cerebrovascular accident	2.8	2.7	3.2	NA
MI	4.4	4.0	6.8	NA
Death/CVA/MI	12.7	13.8	17.8	0.1a, 0.007b
Revascularization	14.5	7.0	23.3	NA
Any MACCE	27.2	20.8	41.2	0.02a, 0.001b

Indications for CABG in Asymptomatic or Mild Angina

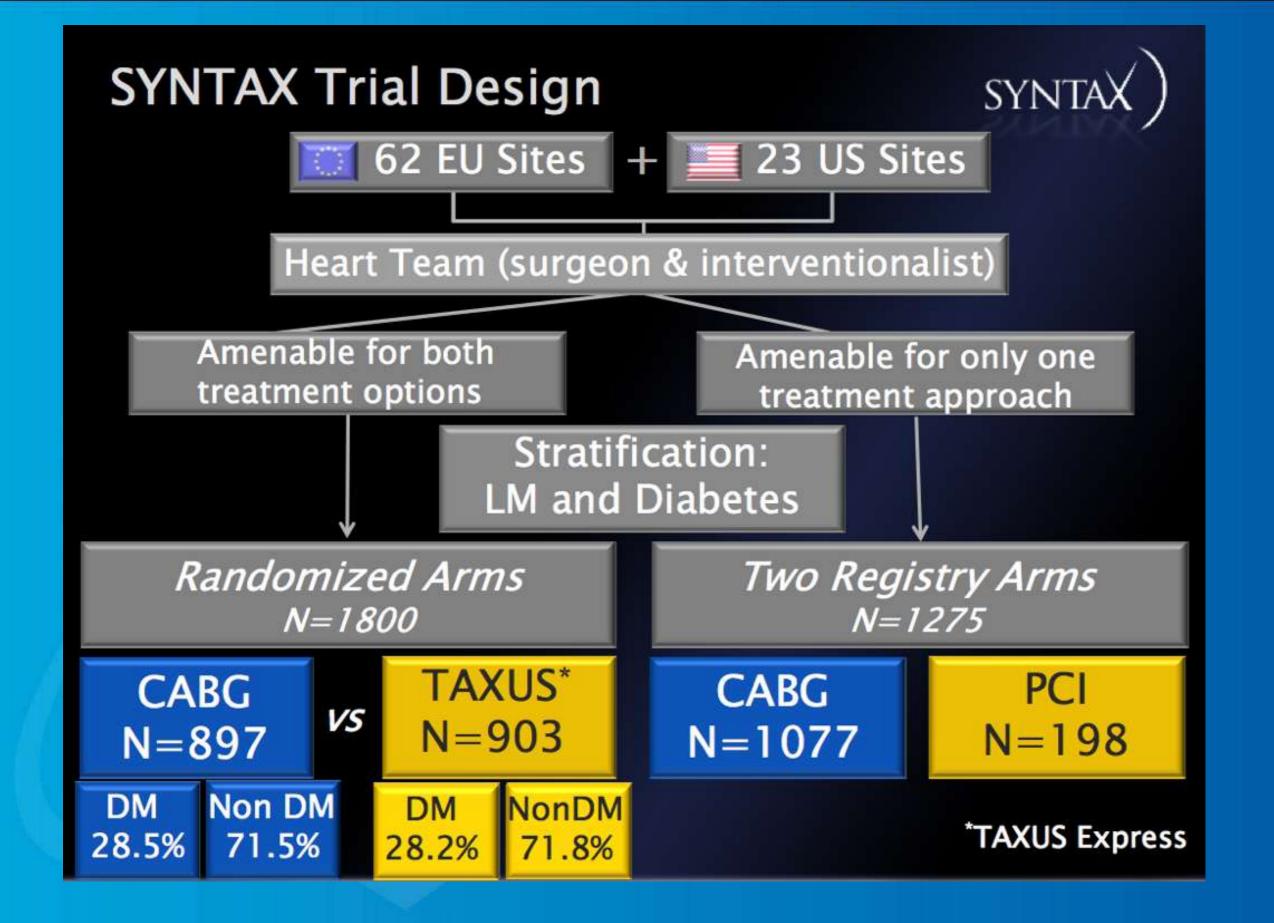
- Class I evidence
- 1. Significant left main coronary artery stenosis.
- 2. Left main equivalent: significant (>=70%) stenosis of proximal LAD and proximal left circumflex artery.
- 3. Three-vessel disease. (Survival benefit is greater in patients with abnormal LV function; eg, with an EF <0.50.)

Indications for CABG in Stable Angina

- Class I evidence
- 1. Significant left main coronary artery stenosis.
- 2. Left main equivalent: significant (>=70%) stenosis of proximal LAD and proximal left circumflex artery.
- 3. Three-vessel disease. (Survival benefit is greater when LVEF is <0.50.)
- 4. Two-vessel disease with significant proximal LAD stenosis and either EF < 0.50 or demonstrable ischemia on noninvasive testing.
- 5. One- or 2-vessel coronary artery disease without significant proximal LAD stenosis, but with a large area of viable myocardium and high-risk criteria on noninvasive testing.
- 6. Disabling angina despite maximal medical therapy, when surgery can be performed with acceptable risk. If angina is not typical, objective evidence of ischemia should be obtained.

Indications for CABG in Unstable Angina

- Class I evidence
- 1. Significant left main coronary artery stenosis.
- 2. Left main equivalent: significant (>=70%) stenosis of proximal LAD and proximal left circumflex artery.
- 3. Ongoing ischemia not responsive to maximal non surgical therapy.
- Class IIa evidence
- 1. Proximal LAD stenosis with 1- or 2-vessel disease.
- Class IIb evidence
- 1. One- or 2-vessel disease not involving the proximal LAD.


New guidelines: ESC

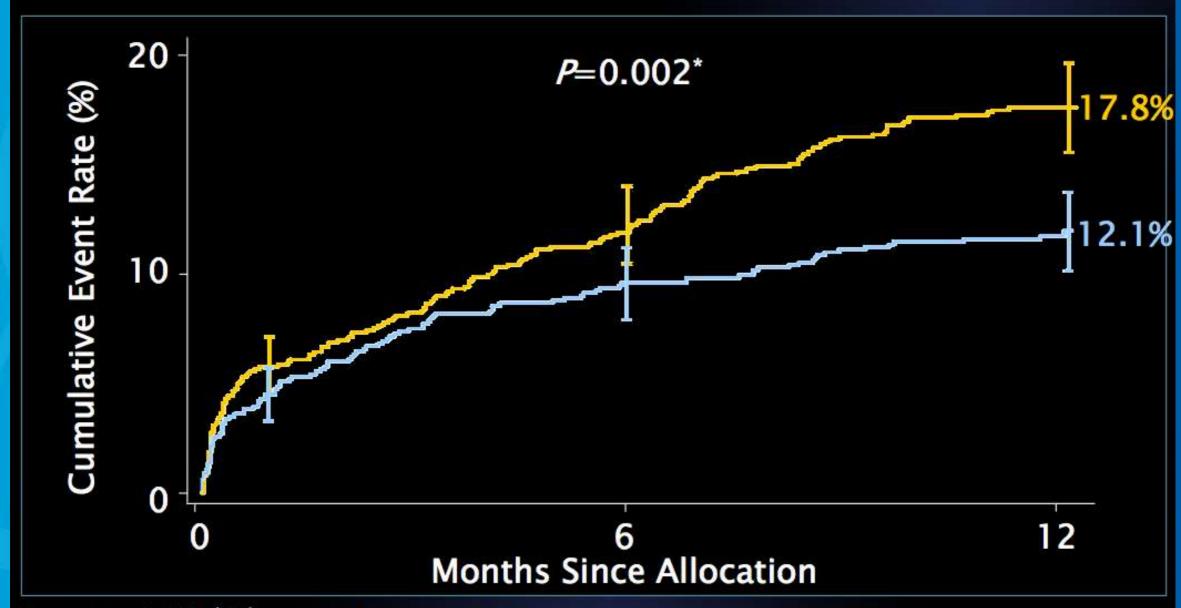
3VD simple lesions, full functional revascularisation achievable with PCI, SYNTAX SCORE <22	IA	IIa B
3VD complex lesions, incomplete revascularisation achievable with PCI, SYNTAX SCORE >22	IA	III A
Left Main (Isolated or 1VD, ostium/shaft)	IA	IIa B
Left Main (Isolated or 1VD, distal bifurcation)	IA	IIb B
Left Main + 2/3VD SYNTAX SCORE <32	IA	IIb B
Left Main + 2/3VD SYNTAX SCORE ≥33	IA	III B

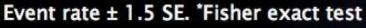
Patient Characteristics (II)

SYNTAX

		-	
Kana	omized	COI	nort

Kanaonnizea Conort	CABG	TAXUS	Dueline
Patient-based	N=897	N=903	<i>P</i> value
Total SYNTAX Score	29.1 ± 11.4	28.4 ± 11.5	0.19
Diffuse disease or small vessels, %	10.7	11.3	0.69
No. lesions, mean ± SD	4.4 ± 1.8	4.3 ± 1.8	0.44
3VD only, %	66.3	65.4	0.70
Left main, any, %	33.7	34.6	0.70
Left Main only	3.1	3.8	0.46
Left Main + 1 vessel	5.1	5.4	0.78
Left Main + 2 vessel	12.0	11.5	0.72
Left Main + 3 vessel	13.5	13.9	0.78
Total occlusion, %	22.2	24.2	0.33
Bifurcation, %	73.3	72.4	0.67
Trifurcation, %	10.6	10.7	0.92

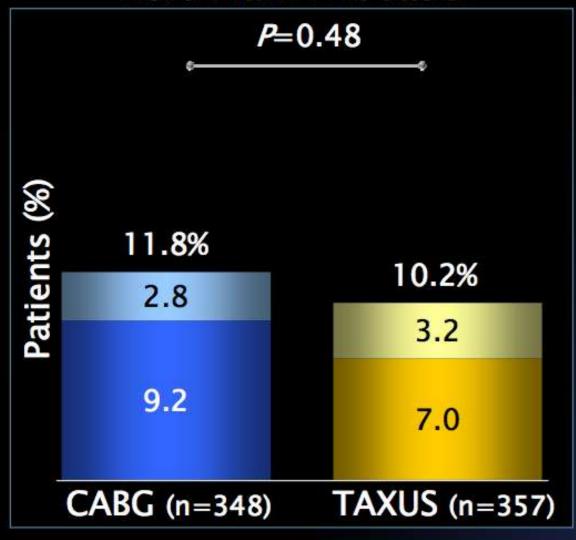


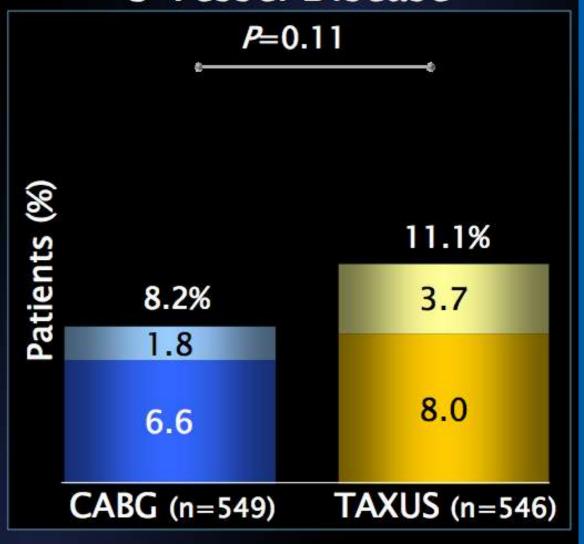

MACCE[†] to 12 Months (Primary endpoint)

■ CABG (N=897)

TAXUS (N=903)

†MACCE: Death, CVA, MI and Repeat Revascularization; ITT population


Combined Safety (Death/CVA/MI) to 2 Years 3VD & LM

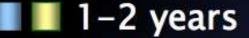


■ 0-1 years
■ 1-2 years

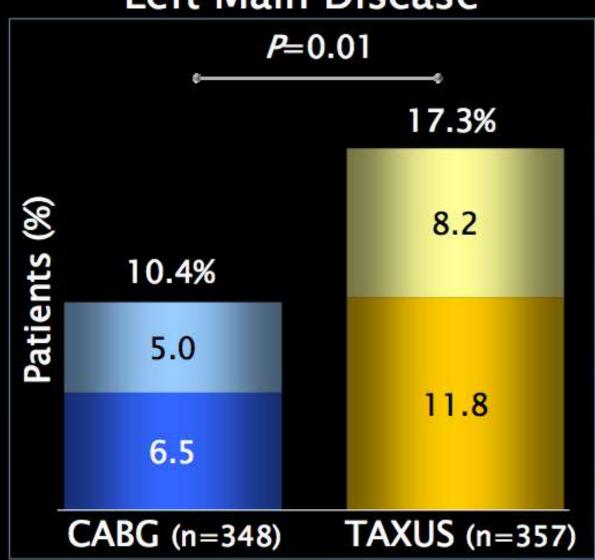
Left Main Disease

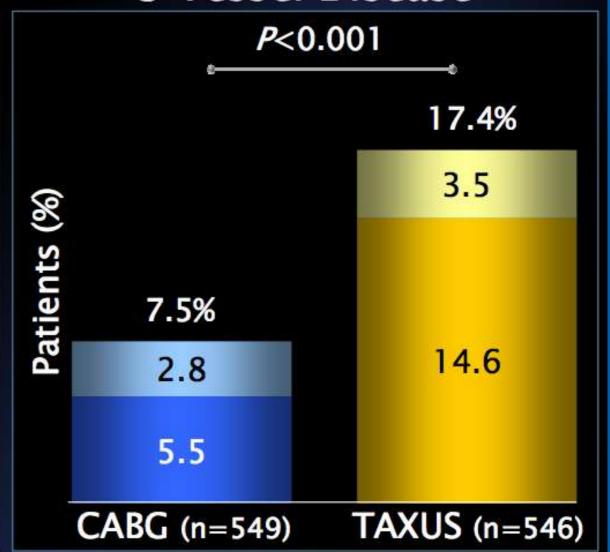
3 Vessel Disease

Total rates calculated as time-to-event; interval rates calculated as binary rates



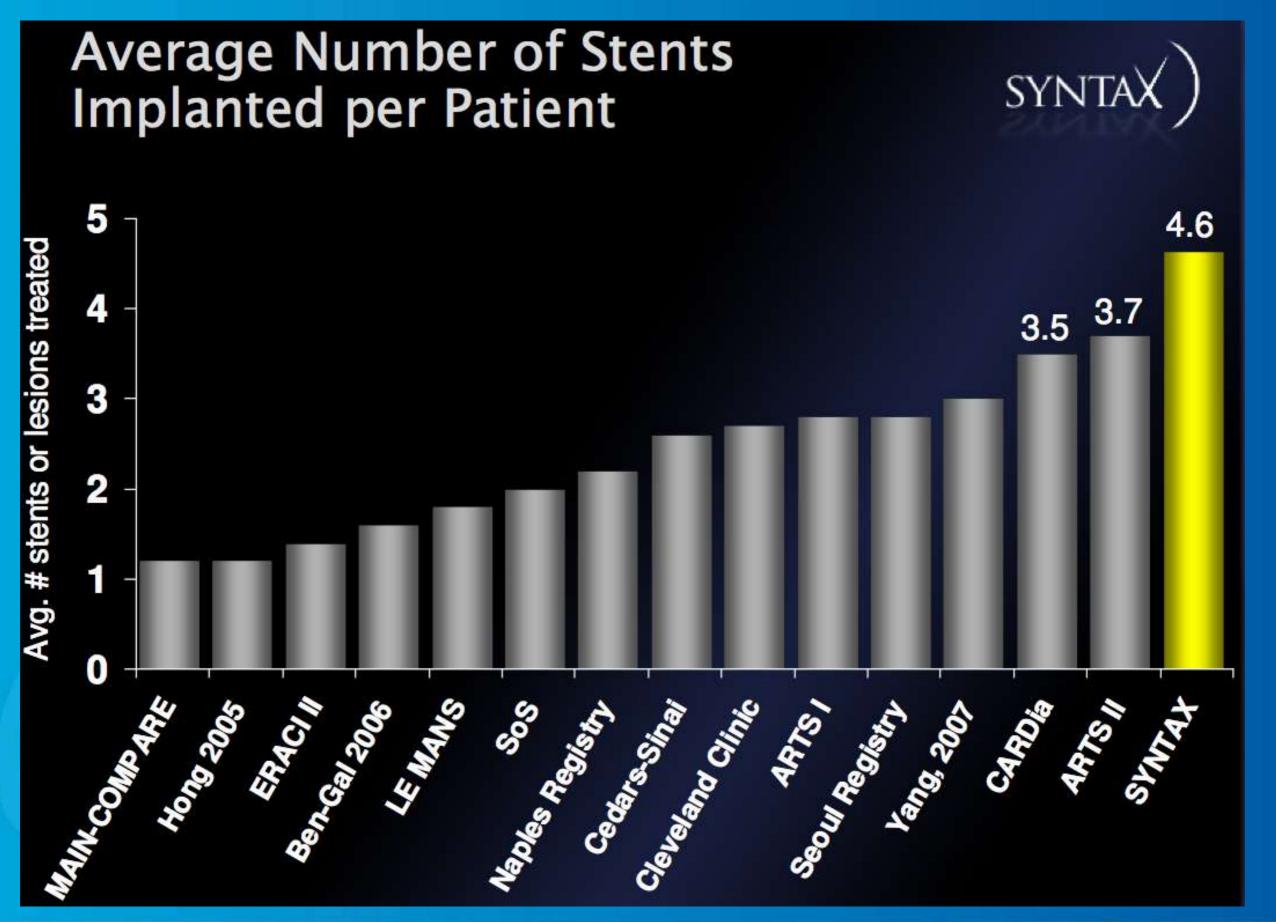
Repeat Revascularization to 2 Years 3VD & LM



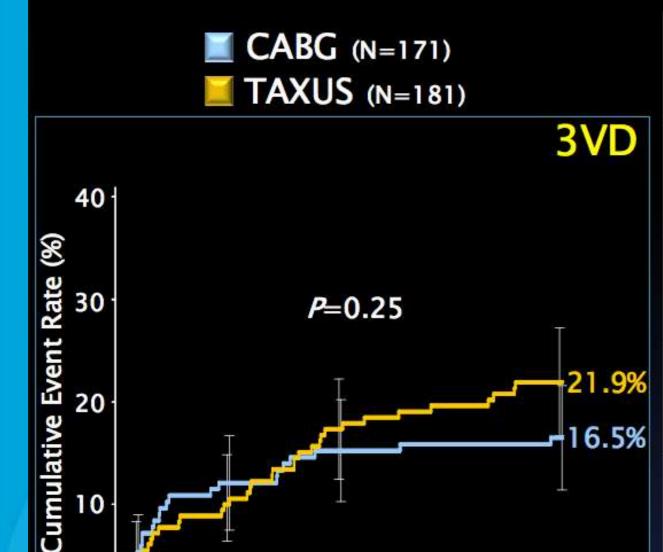


Left Main Disease

3 Vessel Disease



Total rates calculated as time-to-event; interval rates calculated as binary rates



MACCE to 2 Years by SYNTAX Score SYNTAX Tercile 3VD Low Scores (0-22)

24

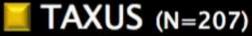
	CABG	PCI	<i>P</i> value
Death	5.5%	5.1%	0.85
CVA	1.9%	1.2%	0.57
МІ	4.2%	3.9%	0.90
Death, CVA or MI	9.7%	8.4%	0.67
Revasc.	7.6%	17.1%	0.01

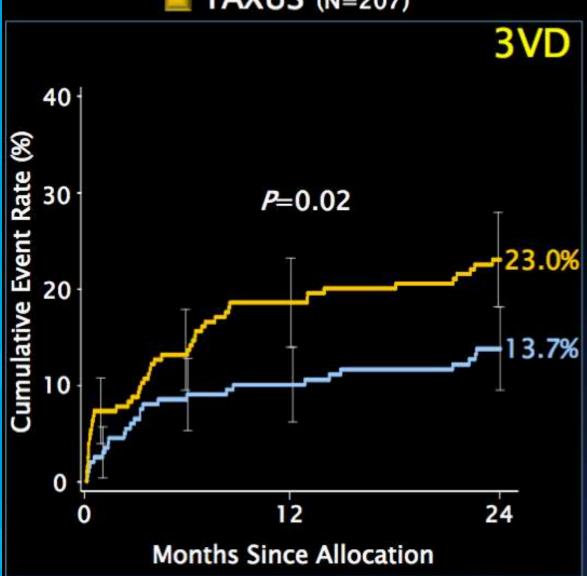
Cumulative KM Event Rate ± 1.5 SE; log-rank Pvalue

12

Months Since Allocation

Site-reported Data; ITT population



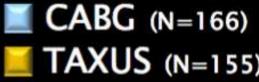


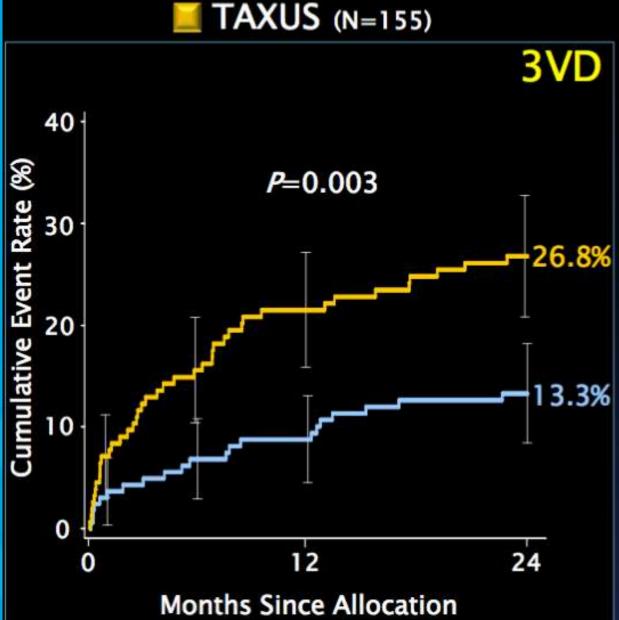
MACCE to 2 Years by SYNTAX Score Tercile 3VD *Intermediate Scores (23–32)*

Cumulative	KM	Event Rate	+ 1	5 SE	log-rank	Pvalue
Cumulative	IN IN	LVEIIL NALE		.J JL,	iog-railk	r value

	CABG	PCI	<i>P</i> value
Death	4.1%	6.4%	0.30
CVA	3.1%	2.0%	0.50
МІ	2.6%	7.4%	0.03
Death, CVA or MI	8.6%	11.7%	0.29
Revasc.	7.3%	16.1%	0.006

Site-reported Data; ITT population





MACCE to 2 Years by SYNTAX Score Tercile 3VD High Scores (≥33)

Cumulative KM Event Rate ± 1.5 SE; log-rank Pvalue

	CABG	PCI	<i>P</i> value
Death	2.5%	8.5%	0.02
CVA	1.9%	2.1%	0.95
МІ	1.9%	7.2%	0.02
Death, CVA or MI	6.3%	13.7%	0.03
Revasc.	7.7%	19.3%	0.002

Site-reported data; ITT population

Review: CABG and percutaneous coronary intervention do not differ for long-term mortality in multivessel coronary artery disease

Laura Rees Willett, MD

Coronary artery bypass graft (CABG) vs percutaneous coronary intervention (PCI) in patients with multivessel coronary artery disease*

Subgroups	5-y mortality		At median 5.9 y	
	CABG	PCI	RRR (95% CI)	NNT (CI)
All	8.4%	10%	8.6% (-2 to 17)	Not significant
Diabetes	12%	20%	28% (12 to 41)	19 (13 to 43)
No diabetes	7.6%	8.1%	2% (-11 to 13)	Not significant
Age ≥ 65 y	11%	15%	17% (3 to 28)	41 (24 to 246)
Age 55 to 64 y	8.0%	9.4%	10% (-9 to 24)	Not significant
			RRI (CI)	NNH
Age < 55 y	5.5%	5.0%	24% (-6 to 63)	Not significant

Ann Intern Med. 21 July 2009;151(2):JC1-8

ASCERT

INTERVENTIONAL/SURGERY

ASCERT CABG, PCI analysis: Lower mortality with surgery

- Weintraub WS, Grau-Sepulveda MV, Weiss JM, et al. Comparative effectiveness of revascularization strategies. N Engl J Med 2012; DOI: 10.1056/NEJMoa1110717. Available at: http://www.nejm.org.
- Mauri L. Why we still need randomized trials to compare effectiveness. N Engl J Med 2012;
 DOI:10.1056/nejme1202866. Available at: http://www.nejm.org.

Interval	HR (95% CI)
30 d	1.72 (1.52-1.89)
1 y	0.95 (0.90-1.00)
2 y	0.79 (0.76-0.83)
4 y	0.79 (0.76-0.82)

"One of the major messages to take away from the study is that cardiologists and surgeons need to be talking to each other more," according to Edwards. If CABG provides better long-term survival than PCI, "that information should be presented to the patient and be used in a dialog between the surgeon and the cardiologist."

RESULTS

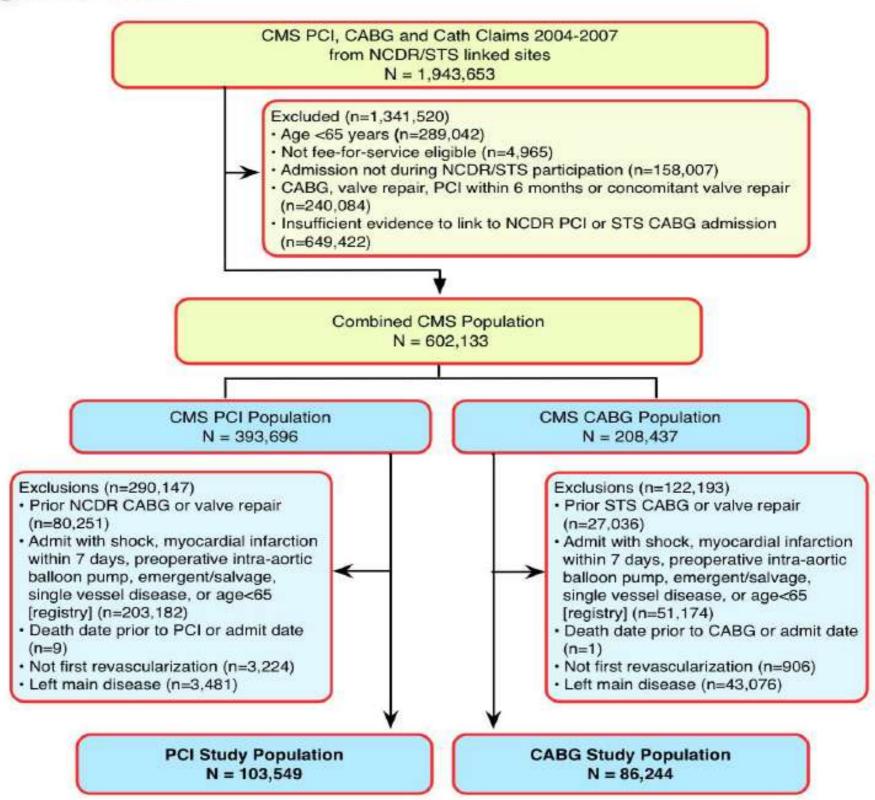
Among patients 65 years of age or older who had two-vessel or three-vessel coronary artery disease without acute myocardial infarction, 86,244 underwent CABG and 103,549 underwent PCI. The median follow-up period was 2.67 years. At 1 year, there was no significant difference in adjusted mortality between the groups (6.24% in the CABG group as compared with 6.55% in the PCI group; risk ratio, 0.95; 95% confidence interval [CI], 0.90 to 1.00). At 4 years, there was lower mortality with CABG than with PCI (16.4% vs. 20.8%; risk ratio, 0.79; 95% CI, 0.76 to 0.82). Similar results were noted in multiple subgroups and with the use of several different analytic methods. Residual confounding was assessed by means of a sensitivity analysis.

Data from 644 Sites

NCDR Sites

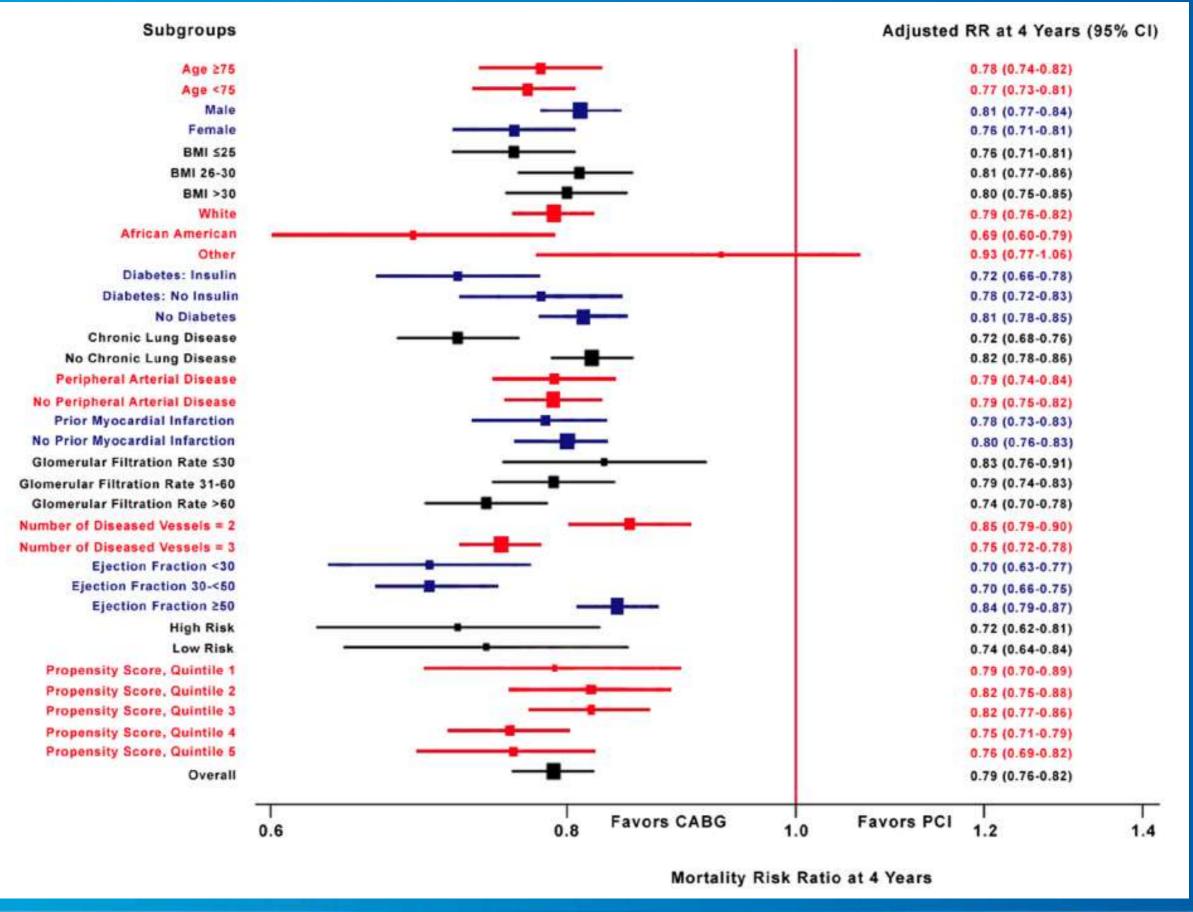
Sorgie Spokane Nontana Dakota Minnesota Minnesota Montreel Por and South Dakota South Michigan Toronto. Reno Nevada Sali Lake Nebraska Condeta Toronto Southers Reno Nevada Southers Kapsas Lacin Montreel Reno Nevada Southers Kapsas Lacin Southers Reno Nevada Southers Kapsas Lacin Southers Reno Nevada Southers Missour Southers Reno Nevada Southers Reno Nevada Southers Missour Southers Reno Nevada Nevada Southers New Je Sakensteld Albus Coute Oktooma Art Caras Southers Southers New Je Delaware Maxico Missour Southers Southers New Je Sakensteld Albus Coute Southers New Je Sakensteld Nevada Trucson Southers New Je Sakensteld S

STS Sites



Baseline Data

	Unadjusted			IPW Adjusted		
	CABG	PCI	P Value	CABG	PCI	P Value
	(n=86,244)	(n=103,549)		(n=86,244)	(n=103,549)	
Age	73.1 ± 5.6	74.7 ± 6.5	< 0.0001	74.0 ± 9.2	74.0 ± 8.3	0.49
Male	68.6	57.8	< 0.0001	62.3	62.8	0.17
History of CHF	11.5	10.2	< 0.0001	11.2	10.8	0.067
History of MI	25.3	24.6	0.0001	24.5	24.7	0.51
Diabetes	38.6	34.4	< 0.0001	35.8	35.8	0.97
Insulin Requiring	10.2	9.8	0.0069	9.7	9.9	0.35
Hypertension	84.8	83.4	< 0.0001	83.9	83.8	0.58
Renal Failure	6.1	6.2	0.57	6.1	6.1	0.80
CKD	20.7	18.9	< 0.0001	19.4	19.6	0.50
CVD	17.6	15.8	< 0.0001	16.6	16.6	0.86
PAD	17.9	15.3	< 0.0001	16.4	16.4	0.97
BMI	28.7 ± 5.8	28.7 ± 5.9	0.78	28.8 ± 8.6	28.7 ± 7.9	0.97
Former Smoker	44.0	42.5	< 0.0001	43.0	43.3	0.45
Current Smoker	12.9	11.6	< 0.0001	11.9	12.0	0.74
No Angina	21.8	30.8	< 0.0001	26.4	26.8	0.23
Stable Angina	49.6	22.6	< 0.0001	34.6	34.9	0.46
Unstable Angina	28.6	46.6	< 0.0001	39.0	38.3	0.066
Ejection Fraction	52.9± 12.2	55.5 ± 11.4	< 0.0001	54.4 ± 17.6	54.4 ± 16.2	0.58
3 Vessel Disease	80.3	32.1	< 0.0001	53.2	53.8	0.043
Status Urgent	68.6	57.8	< 0.0001	62.3	62.8	0.17


Conclusions

- Survival was similar in the two arms at 1 years
- Survival was higher in the CABG than PCI arm at 4 years
- The results were largely consistent across subgroups
- This is largely consistent with both clinical trial and observational studies
- Causal inference requires considering the totality of the data, of which ASCERT is a critical part
- ASCERT offers critical experience in comparative effectiveness research using observational data

Limitations

- All observational studies have possible treatment selection bias.
- This can be approached, but not fully resolved, by careful database design, statistical analysis and sensitivity analysis.
- Several variables were not available (e.g. frailty) or of limited quality (e.g. angiographic details) in the ASCERT data.
- There was missing data for several variables (e.g. GFR and EF)
- ASCERT outcomes are limited to patients age 65 and older.
- This presentation concerns mortality only (composite endpoints, angiographic analyses, economic analysis will follow)

FAME

Fractional flow reserve—guided PCI reduced major adverse cardiac outcomes compared with angiographyguided PCI in multivessel CAD

Fractional flow reserve (FFR)- vs angiography-guided percutaneous coronary intervention in patients with multivessel coronary artery disease‡

Outcomes	FFR	Angiography	At 1 y		
			RRR (95% CI)	NNT (CI)	
Major adverse cardiac event	13%	18%	28% (4 to 46)	20 (12 to 137)	
Death	1.8%	3.0%	42% (-32 to 74)	Not significant	
Myocardial infarction	5.7%	8.7%	34% (-4 to 58)	Not significant	
Repeated revascularization	6.5%	9.5%	32% (-5 to 55)	Not significant	

Appropriateness

JANUARY 30, 2012

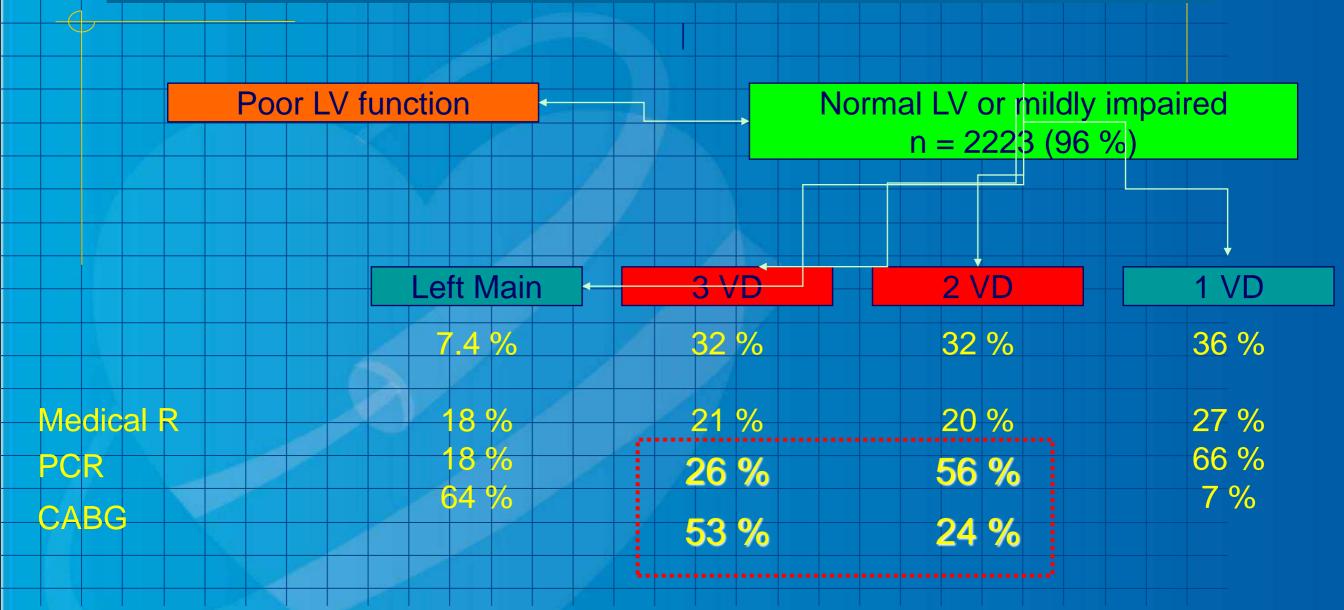
Appropriate Use Criteria for Revascularization Updated Reply

by Larry Husten • Interventional Cardiology & Surgery • Tags: appropriate use criteria, CABG, cardiac surgeons, left main disease, multivessel disease, PCI

The ACC, AHA, and other organizations have released updated appropriate use criterial for coronary revascularization. The 2012 Appropriate Use Criteria for Coronary Revascularization Focused Update incorporates data from the SYNTAX trial on the indications for PCI and CABG in patients with symptomatic, multivessel disease, as well as data from the CathPCI registry.

Here are some of the key ratings:

- PCI for low burden left main disease alone or with blockages in other arteries with a low disease burden: uncertain
- PCI for intermediate or high burden left main disease: inappropriate
- · PCI for low burden three-vessel disease: appropriate
- PCI for intermediate or high burden three-vessel disease:
 uncertain
- CABG remains appropriate for patients with two vessel disease including the proximal LAD and all three vessel and left main disease.



Euro Heart Survey on Coronary Revascularization

N. Mercado, on behalf of the Investigators and Expert Committee

No difference in treatment options between diabetics and non diabetics

Treatment Strategy for Stable Angina n = 2316

Conclusion 1

- Patient selection is primordial
- Scores are useful to select patients
- Age of 65 and more may be important
- Patient comorbidity is important
- Patient choice is important but often modifiable by open discussion
- Heart team and discussion of patients with surgeon is essential

Conclusion 2

- Good strategy is essential
- Right material
- Use of prior FFR is useful
- Knowing when to refer patient for surgery
- Recognizing our own limits

Thank you for your attention

