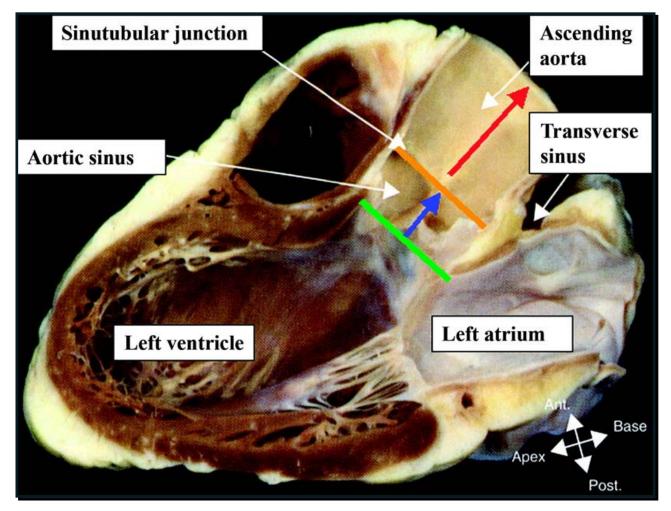


SOLACI-2012

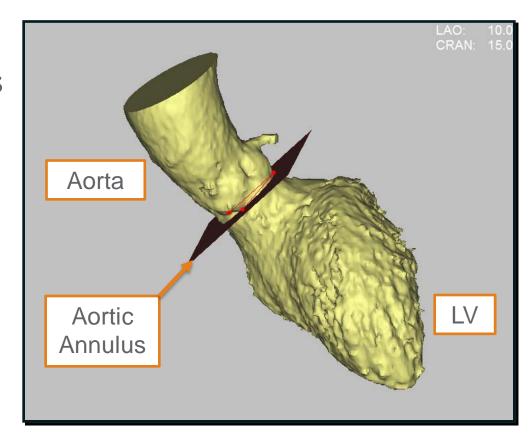


CoreValve Celebrating 1000 implants

Sizing the Annulus: Understanding the new challenges for optimal result

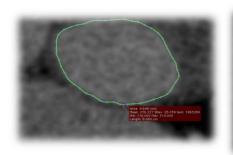
Luiz Antonio Carvalho

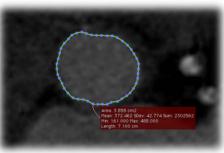
Aortic Root Anatomic Overview

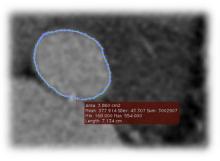

1. This figure is from *Surgical Anatomy of the Heart*, 3rd Edition, Benson R. Wilcox, UNC Hospitals, Andrew C. Cook, Robert H. Anderson, Copyright © 2004 Cambridge University Press (figure 2.56, p. 41.) . Reprinted with the permission of Cambridge University Press.

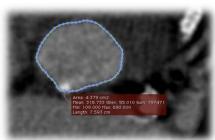
The Aortic Annulus

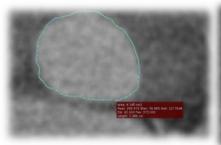
- Virtual plane defined by the most basal point of each of the three leaflets of the aortic valve
- Also known as:
 - Basal plane
 - Basal ring
 - Annulus plane
- Primary location measured for choosing prosthesis size

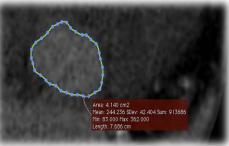




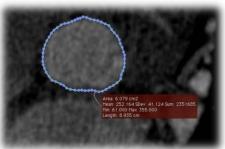


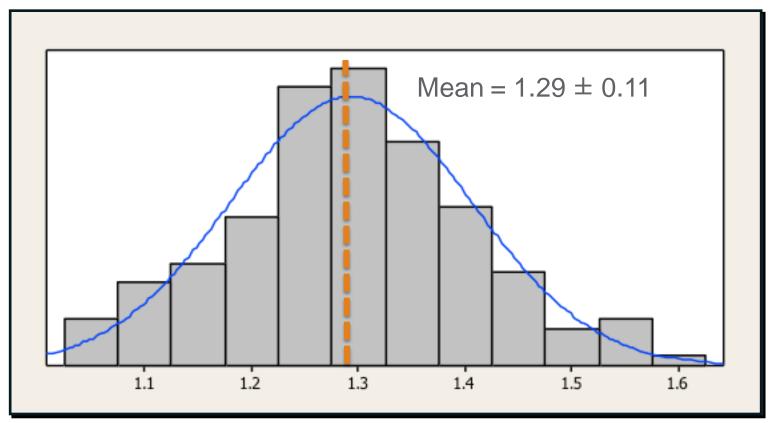

The Aortic Annulus


The aortic annulus is typically non-circular









Double-oblique axial images at the aortic annular plane Courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany

The Aortic Annulus

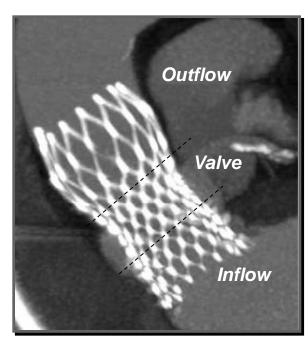
Distribution of D_{max}/D_{min} from 164 TAVI patients

Courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany

INTERNATIONAL. CAUTION: For distribution only in markets where CoreValve® is approved. Not for distribution in U.S., Canada or Japan. Medtronic, Inc. 2011. All Rights Reserved.

Designed to Conform to Anatomy

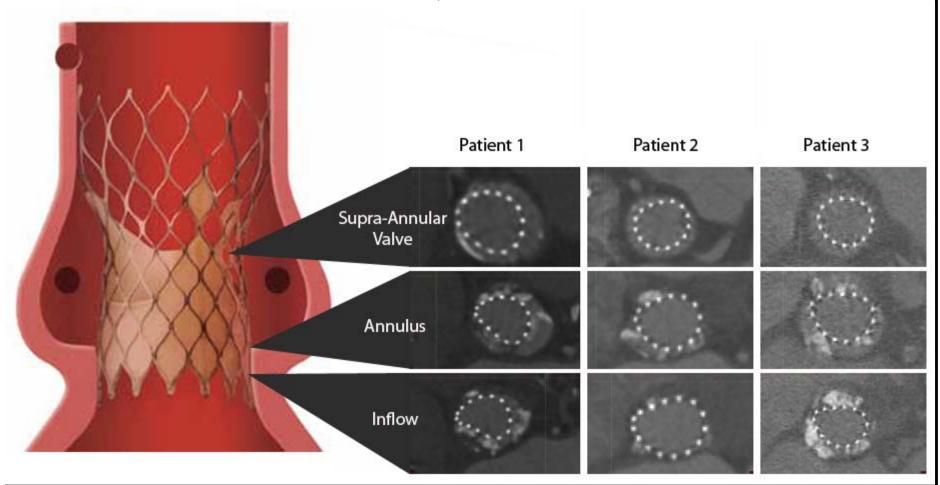
Outflow Orientation


Constrained Portion

Supra-annular Valve Function

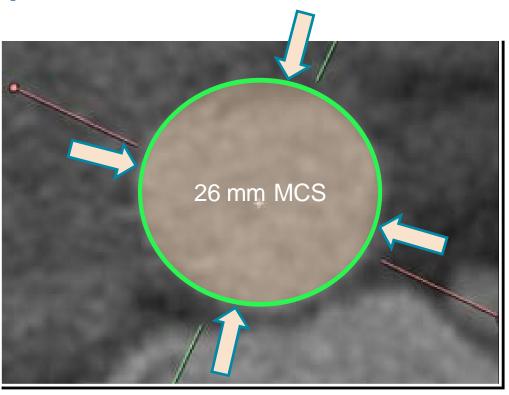
Inflow Portion

Anchors Device Promotes Sealing Conforms to Anatomy


Photograph provided by Piazza, Serruys, and DeJaegere

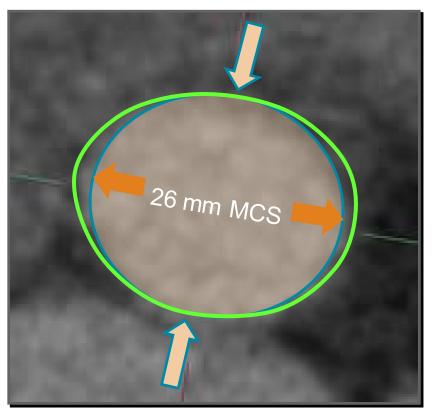
Examples of Conformability

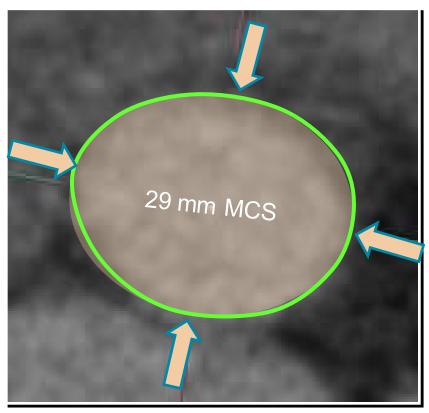
Courtesy of Drs. de Jaegere and Schultz, Erasmus MC, Rotterdam, The Netherlands


Anatomic Implications for TAVI Imaging

- The aortic annulus is clearly a complex structure and requires imaging that can take into account its elliptical and irregular shape
- Single diameter sizing methods can provide misleading results
- 3D imaging can provide a more accurate representation of the aortic annulus

Circular Example


2D Sizing

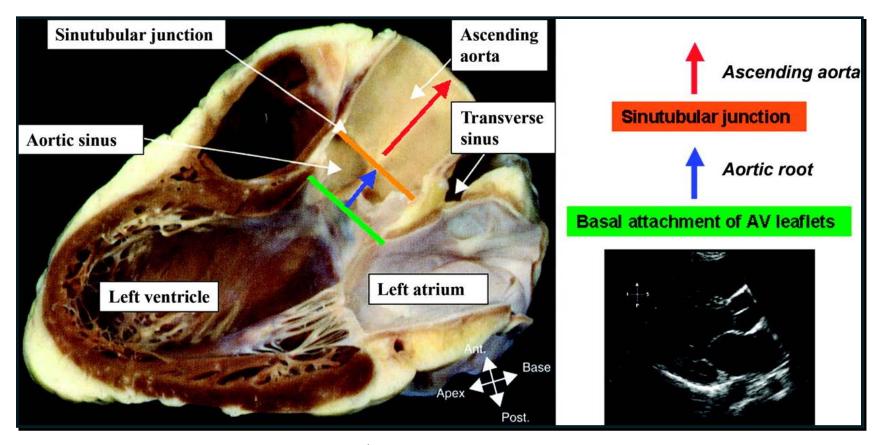

- 1. If the annulus is a circle, the device will have uniform inflow interference.
- 2. Imaging modality **not critical** a diameter is a diameter is a diameter

Non-Circular Example

2D Sizing

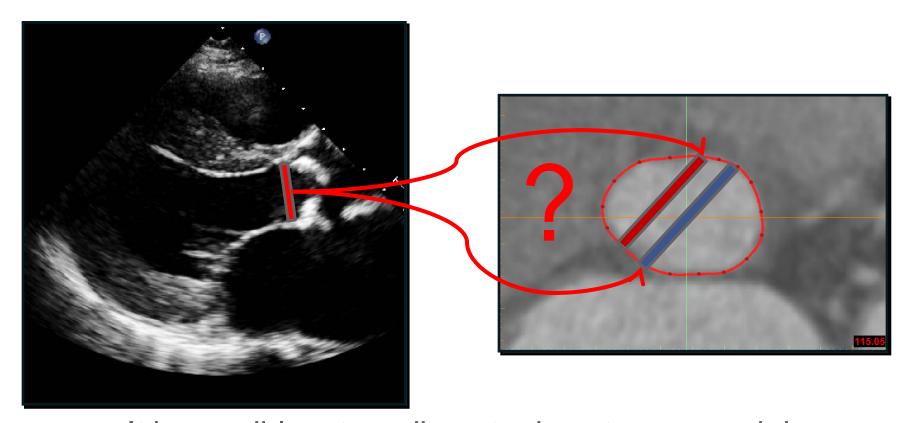
3D Sizing

- 1. If the annulus is non-circular, the device can still have the intended inflow interference.
- 2. Imaging modality important 3D will provide better sizing insight than 2D


Sizing Imaging Comparison

- 2D echocardiography has been historically used for TAVI sizing
 - Availability for use before, during and after procedure
 - Primary modality used for hemodynamic evaluation
- 3D MSCT offers the following advantages
 - Multiple measurements (area, perimeter, diameters)
 - High reproducibility and spatial resolution
 - Calcification can be assessed
 - The rest of the device landing zone can be similarly analyzed
 - Peripheral assessment

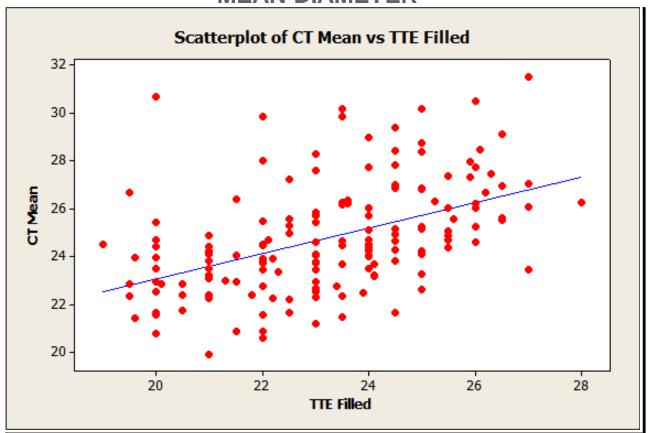
Aortic Root Anatomy on Echo



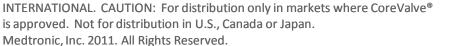
1. This figure is from *Surgical Anatomy of the Heart*, 3rd Edition, Benson R. Wilcox, UNC Hospitals, Andrew C. Cook, Robert H. Anderson, Copyright © 2004 Cambridge University Press (figure 2.56, p. 41.) . Reprinted with the permission of Cambridge University Press.

A Limitation of Echo

It is possible a true diameter is not measured due to the imaging plane acquired

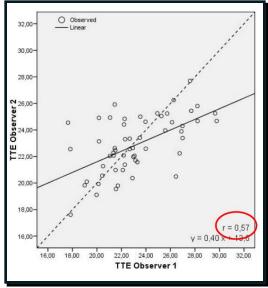

1. This figure is from *Surgical Anatomy of the Heart*, 3rd Edition, Benson R. Wilcox, UNC Hospitals, Andrew C. Cook, Robert H. Anderson, Copyright © 2004 Cambridge University Press (figure 2.56, p. 41.). Reprinted with the permission of Cambridge University Press.

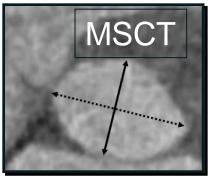
Low Correlation Between Echo and CT

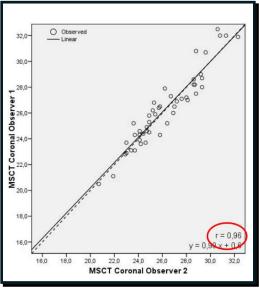

MEAN DIAMETER

162 patients → Low correlation between echo diameter and all CT derived measurements (major, minor, & mean diameters, perimeter, and area)

Courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany





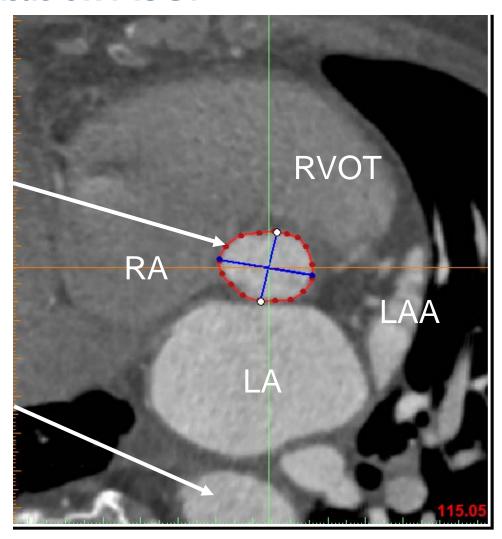


MSCT is Highly Reproducible Compared to Echo

1. Tzikas A, et al. Catheter Cardiovasc Intervent. 2011;77(6):868-75. Reprinted with the permission of John Wiley and Sons.

MSCT Basics for TAVI

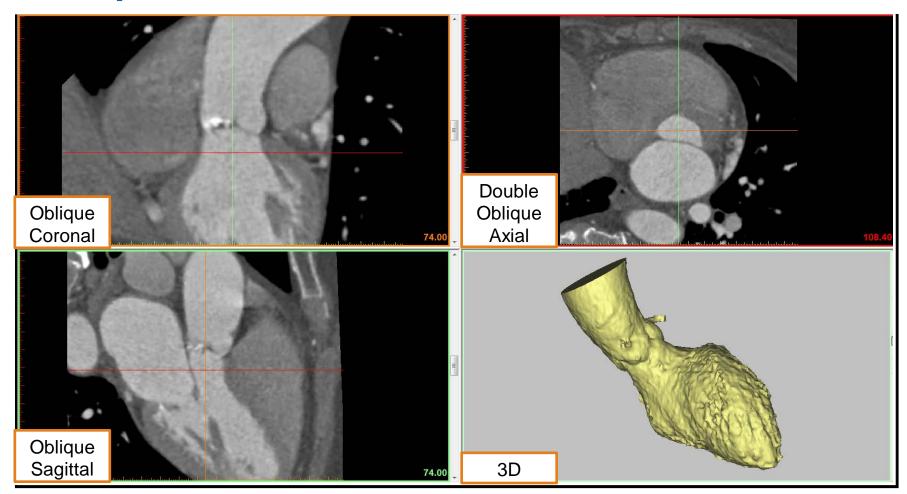
- The aortic annulus is not co-planar with the traditional planes of the body (axial, sagittal, coronal)
- Because MSCT is a 3D (and 4D) imaging modality, it allows for reformatting of the 3D images
- This technique is called multi-planar reformatting (MPR)
- To properly assess the aortic annulus using MSCT, MPR is used to reformat the images such that the original axial image is now co-planar with the annular plane
 - It is commonly referred to as the double oblique axial image
 - The coronal and sagittal images are also reformatted into oblique coronal and oblique sagittal



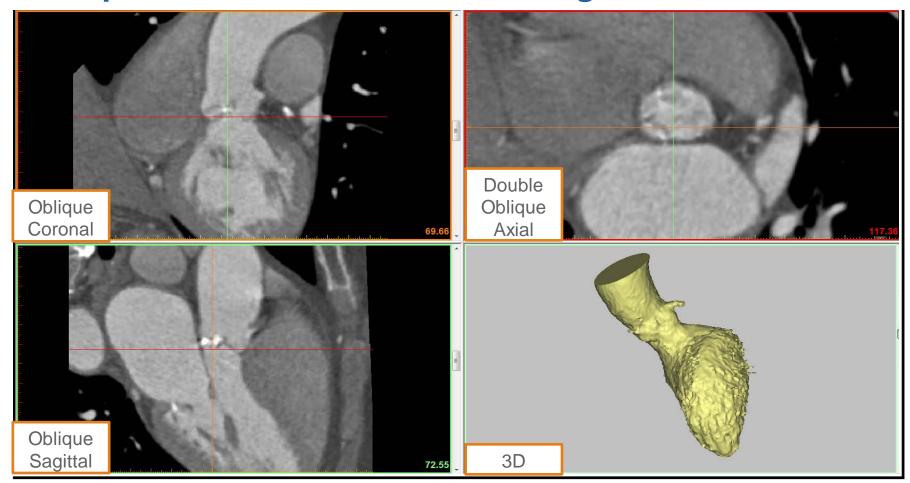
The Aortic Annulus on MSCT

Aortic Annulus

Descending Aorta



Example of Incorrect Plane – Too Low



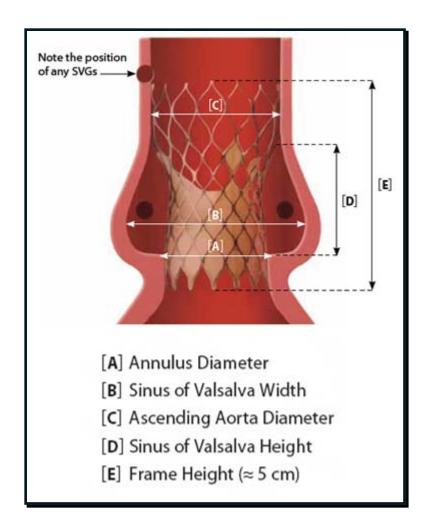
Example images of reformatted oblique coronal (upper left), oblique sagittal (lower left), double oblique (upper right) and 3D reconstruction lower right. The double oblique axial image is located approximately 10 mm into the LVOT.

Example of Incorrect Plane – Too High

Example images of reformatted oblique coronal (upper left), oblique sagittal (lower left), double oblique (upper right) and 3D reconstruction lower right. The double oblique axial image is located a few mm into the aortic root and the leaflets are visible.

Device Sizing Can Impact Procedural Outcomes

- Significant variation exists in TAVI device selection
 - Imaging modality differences
 - Definition of aortic annulus
 - Industry differences
 - Physician preference and experience
- The aortic annulus is a non-circular structure and proper imaging is important¹⁻⁶
- Several publications have demonstrated a correlation between sizing and clinical outcomes⁷⁻¹⁴

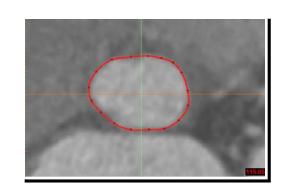

See slide 34 for references.

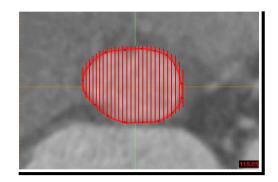
Anatomic Features Important for TAVI Sizing

- Primary features:
 - The aortic annulus
 - The sinuses of Valsalva
 - The ascending aorta
- Secondary features:
 - Coronary artery ostiums
 - Left ventricular outflow tract (LVOT)

Aortic Root Measurements

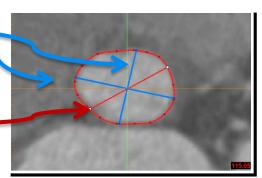
- Aortic annulus measurements
 - Annulus perimeter.
 - Annulus area.
 - Major aortic annulus diameter.
 - Orthogonal minor aortic annulus diameter.
- Additional aortic root measurements
 - Sinus of Valsalva diameters.
 - Sinus of Valsalva heights.
 - Maximum ascending aorta diameter at 40mm above annulus.


Measured on ECG-gated images of the chest



Step 1: Aortic Annulus Measurements

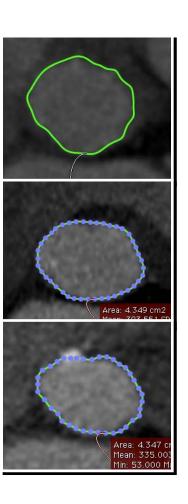
Perimeter: linear distance of tracing around the aortic annulus


Area: area contained within tracing around the aortic annulus

Major & Orthogonal Minor Diameters:

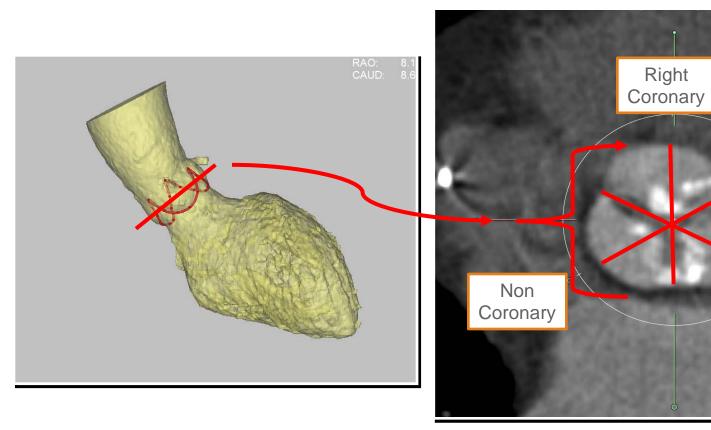
linear distances through the center of the aortic annulus

Mean Diameter: Calculated mean of major and minor diameters



The Aortic Annulus – A Critical & Measurable Parameter for Device Selection

- The annulus is easily definable and measurable.
- It represents the constriction between LVOT and aortic root a major anchoring point for the inflow of the CoreValve frame
- It has a multitude of shapes:
 - Non-circular and non-elliptical (most common)
 - Elliptical
 - Circular (rare)

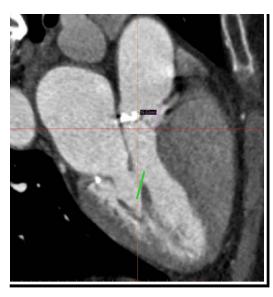

Any single diameter may not necessarily approximate the annulus "size" appropriately due to ellipticity or irregularity in shape.

Step 2: Sinus of Valsalva Diameters

Scroll to the widest portion of the sinus in the reformatted double oblique axial images. Measure from commissure through center to opposite sinus. Complete for all three sinuses.

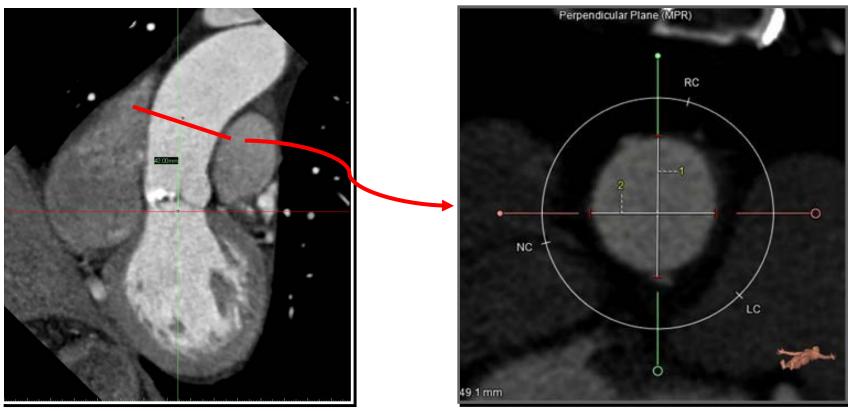
Left

Coronary


Step 3: Sinus of Valsalva Heights

Left coronary sinus height

Non coronary sinus height


Right coronary sinus height

Measurements should be completed on the oblique coronal and sagittal images and taken from the aortic annulus (shown as the red line) to the highest point of the sinus, along the direction of the sinus.

Step 4: Maximum Ascending Aorta Diameter

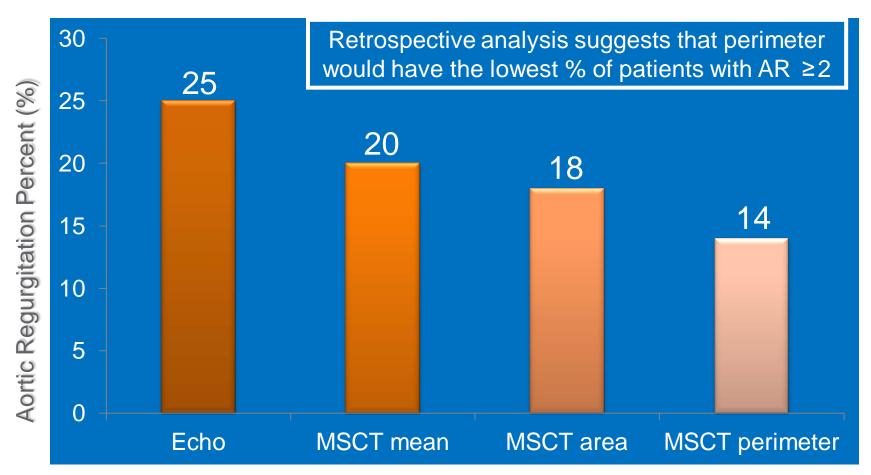
On oblique coronal measure 30 or 40mm from aortic annulus along root.

Measure maximum and orthogonal ascending aorta diameters on orthogonal image at 30 or 40mm above annulus.

Step 5: Device Size Selection Sinus of Valsalva and Ascending Aorta Ranges

	Sinus of Valsalva Diameter (mm)	Sinus of Valsalva Height (mm)	Ascending Aorta Maximum Diameter (mm)
23	≥ 25	≥ 15	≤ 34
26	≥ 27	≥ 15	≤ 40
29	≥ 29	≥ 15	≤ 43
31	≥ 29	≥ 15	≤ 43

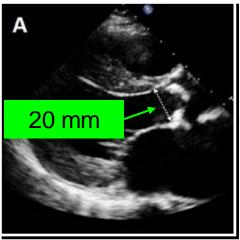
Step 5: Device Size Selection Aortic Annulus Ranges

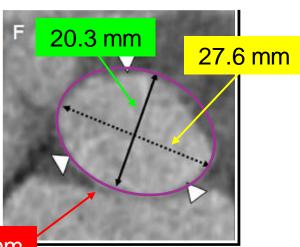

	Diameter Range (mm)	Perimeter Range (mm)	Area Range (mm²)
23	18 - 20	56.5 - 62.8	254.5 - 314.2
26	20 - 23	62.8 - 72.3	314.2 - 415.5
29	23 - 27	72.3 - 84.8	415.5 - 572.6
31	26 - 29	81.7 - 91.1	530.9 – 660.5

Recent evidence supports perimeter as the recommended method for TAVI sizing

Comparison of MSCT Annulus Measurements

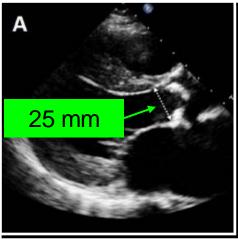
Imaging modality

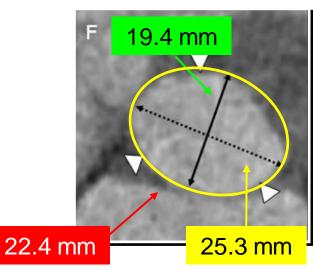

Retrospective analysis. Courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany



Hypothetical Sizing Example #1

Modality	Device Size
Echo	26 mm
CT Minor Diameter	26 mm
CT Major Diameter	31 mm
CT Perimeter	29 mm
CT Area	29 mm
CT Mean	29 mm


24.6 mm


1. Tzikas A, et al. Catheter Cardiovasc Intervent. 2011;77(6):868-75. Reprinted with the permission of John Wiley and Sons.

Hypothetical Sizing Example #2

Modality	Device Size
Echo	29 mm
CT Minor Diameter	23 mm
CT Major Diameter	29 mm
CT Perimeter	26 mm
CT Area	26 mm
CT Mean	26 mm

1. Tzikas A, et al. Catheter Cardiovasc Intervent. 2011;77(6):868-75. Reprinted with the permission of John Wiley and Sons.

Clinical Implications: Paravalvular Leak

Transcatheter aortic valve implantation: role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function

Victoria Delgado¹, Arnold C.T. Ng¹, Nico R. van de Veire¹, Frank van der Kley¹, Joanne D. Schuijf¹, Laurens F. Tops¹, Arend de Weger¹, Giuseppe Tavilla¹, Albert de Roos², Lucia J. Kroft², Martin J. Schalij¹, and Jeroen J. Bax¹°

*Department of Cardiology and Cardiothoux's Signey, Leiden Uhlerstip Medical Center, Abtriusthed 2, Leiden 2333 ZA, The Netherlands, and *Department of Radiolog Leiden Unit and Reducin Calculate Submission Calculate Control

Determinants of Significant

Paravalvular Regu Transcatheter Aor

Impact of Device and Annulu

Delphine Détaint, MD, Laurent I

Multimodality Imaging in Trans Implantation and Post-Procedu

Comparison Among Cardiovascular Mag Cardiac Computed Tomography, and

Andrew Jabbour, MBBS, PtID,*† Tevfik F. Ismail Ankur Gulati, MBBCH,*† Isabelle Roussin, MBB Bradley Park, MSC,* Francois Okoroafor,* Anita A Sanjay K. Prasad, MD,*† Michael Rubens, MBBS London, United Kingdom Correlation of Device Landing Zone Calcification and Acute Procedural Success in Patients Undergoing Transcatheter Aortic Valve Implantations With the Self-Expanding CoreValve Prosthesis

Daniel John, MD, Lutz Buellesfeld, MD, Seyrani Yuecel, MD, Ralf Mueller, MD, Georg Latsios, MD, Harald Beucher, MD, Ulrich Gerckens, MD, Eberhard Grube, MD

Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation

Sizing and calcification are being investigated as major determinants of TAVI outcomes, for both Medtronic CoreValve® & Edwards Sapien®

Kathrin Brehmer a, Rolf W, Günther b,

rasse 30, 52074 Aachen, Germany Pauwelsstrasse 30, 52074 Aachen, Germany Jelsstrasse 30, 52074 Aachen, Germany

r Aortic Regurgitation nplantation Using the Prosthesis

Adriaan Moelker,² mb, Phb, pel M. Geleijnse, ¹ mb, Phb, , Phb, Pim de Feyter,^{1,2} mb, Phb, de Jaegere, ¹ mb, Phb

t by edict

EXPEDITED PUBLICATION

Cross-Sectional Computed Tomographic Assessment Improves Accuracy of Aortic Annular Sizing for Transcatheter Aortic Valve Replacement and Reduces the Incidence of Paravalvular Aortic Regurgitation

Hasan Jilaihawi, BSC (HONS), MBCHB,* Mohammad Kashif, MD,* Gregory Fontana, MD,†
Azusa Furugen, MD, PHD,* Takahiro Shiota, MD,* Gerald Friede, BS, MS,* Rakhee Makhija, MD,*
Niraj Doctor, MBBS,* Martin B. Leon, MD,‡ Raj R. Makkar, MD*

Los Angeles, California; and New York, New York

Moderate or Severe Paravalvular Regurgitation After Transcatheter Aortic Valve Replacement

A Multicenter Retrospective Analysis

Alexander B. Willson, MBBS, MPH,* John G. Webb, MD,* Troy M. LaBounty, MD,†
Stephan Achenbach, MD,‡ Robert Moss, MBBS,* Miriam Wheeler, MBBS,*
Christopher Thompson, MD,* James K. Min, MD,† Ronen Gurvitch, MBBS,* Bjarne L. Norgaard, MD,§
Cameron J. Hague, MD,* Stefan Toggweiler, MD,* Ronald Binder, MD,* Melanie Freeman, MBBS,*
Rohan Poulter, MBBS,* Steen Poulsen, MD,§ David A. Wood, MD,* Jonathon Leipsic, MD*
Vancouver, Canada; Los Angeles, California; Giessen, Germany; and Aarbus, Denmark

Academia
Medical Education

INTERNATIONAL. CAUTION: For distribution only in markets where CoreValve® is approved. Not for distribution in U.S., Canada or Japan. Medtronic, Inc. 2011. All Rights Reserved.

MSCT – Complete Pre-Implant TAVI Planning Tool

- 3D
- Multiple measurements possible (area, perimeter, diameters)
- Assessment of calcification
- Assessment of entire device landing zone
- Assessment of peripheral access routes
- High reproducibility and spatial resolution

MSCT is Recommended

- The aortic annulus is non-circular and exhibits variability in shape across the patient population
- MSCT sizing has been linked to a reduction in paravalvular leakage
- Calcification location and burden have been linked to paravalvular leakage – MSCT is the only method available to properly assess calcification
- MSCT allows for complete patient assessment in one exam

