<u>Diagnostic Accuracy of Fractional Flow Reserve</u> from <u>Anatomic Computed TOmographic</u> Angiography: The DeFACTO Study

James K. Min¹; Jonathon Leipsic²; Michael J. Pencina³; Daniel S. Berman¹; Bon-Kwon Koo⁴; Carlos van Mieghem⁵; Andrejs Erglis⁶; Fay Y. Lin⁷; Allison M. Dunning⁷; Patricia Apruzzese³; Matthew J. Budoff⁸; Jason H. Cole⁹; Farouc A. Jaffer¹⁰; Martin B. Leon¹¹; Jennifer Malpeso⁸; G.B. John Mancini¹²; Seung-Jung Park¹³, Robert S. Schwartz¹⁴; Leslee J. Shaw¹⁵, Laura Mauri¹⁶ on behalf of the DeFACTO Investigators

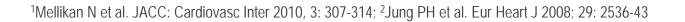
¹Cedars-Sinai Heart Institute, Los Angeles, CA; ²St. Paul's Hospital, Vancouver, British Columbia; ³Harvard Clinical Research Institute, Boston, MA; ⁴Seoul National University Hospital, Seoul, Korea; ⁵Cardiovascular Center, Aalst, Belgium; ⁶Pauls Stradins Clinical University Hospital, Riga, Latvia; ⁷Cornell Medical College, New York, NY; ⁸Harbor UCLA, Los Angeles, CA; ⁹Cardiology Associates, Mobile, AL; ¹⁰Massachusetts General Hospital, Harvard Medical School, Boston, MA; ¹¹Columbia University Medical Center, New York, NY; ¹²Vancouver General Hospital, Vancouver, British Columbia; ¹³Asan Medical Center, Seoul, Korea; ¹⁴Minneapolis Heart Institute, Minneapolis, MN; ¹⁵Emory University School of Medicine, Atlanta, GA; ¹⁶Brigham and Women's Hospital, Boston, MA

Disclosures

- Study funding provided by HeartFlow which had no involvement in the data analysis, abstract planning or manuscript preparation
- No study investigator had any financial interest related to the study sponsor

Background

- Coronary CT Angiography:
 - High diagnostic accuracy for anatomic stenosis
 - Cannot determine physiologic significance of lesions¹
- Fractional Flow Reserve (FFR):
 - Gold standard for diagnosis of lesion-specific ischemia²
 - Use improves event-free survival and cost effectiveness^{3,4}
- FFR Computed from CT (FFR_{CT}):
 - Novel non-invasive method for determining lesion-specific ischemia⁵


Overall Objective

• To determine the diagnostic performance of FFR_{CT} for detection and exclusion of hemodynamically significant CAD

Study Endpoints

- Primary Endpoint: <u>Per-patient diagnostic accuracy</u> of FFR_{CT} plus CT to diagnose hemodynamically significant CAD, compared to invasive FFR reference standard
 - Null hypothesis rejected if lower bound of 95% CI > 0.70
 - 0.70 represents 15% increase in diagnostic accuracy over myocardial perfusion imaging and stress echocardiography, as compared to FFR^{1,2}
 - 252 patients: >95% power
- Secondary Endpoint:
 - Diagnostic performance for intermediate stenoses (30-70%)

Study Criteria

Inclusion Criteria:

- Underwent <u>></u>64-row CT
- Scheduled for ICA within 60 days of CT
- No intervening cardiac event

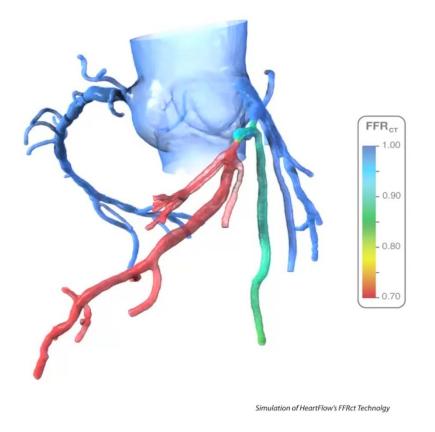
Exclusion Criteria:

- Prior CABG
- Suspected in-stent restenosis
- Suspected ACS
- Recent MI within 40 days of CT

Study Procedures

- Intention-to-Diagnose Analysis
 - Independent blinded core laboratories for CT, QCA, FFR and FFR_{CT}
 - ${\sf FFR}_{\sf CT}$ for all CTs received from CT Core Laboratory
- CT: Stenosis severity range¹
 0%, 1-29%, 30-49%, 50-69%, 70-89%, <u>></u>90%
- **OCA**: Stenosis severity (%)
- FFR: At maximum hyperemia during ICA
 Definition: (Mean distal coronary pressure) / (Mean aortic pressure)
- Lesion-Specific Ischemia: <0.80 (FFR and FFR_{CT})²

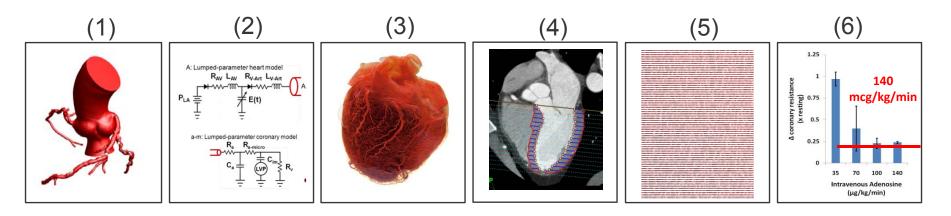
¹Raff GL et al. J Cardiovasc Comp Tomogr 2009; 3: 122-36; ²Tonino PA et al. N Engl J Med 2009; 360: 213-24; FFR, subtotal / total occlusions assigned value of 0.50; FFR_{CT}, subtotal / total occlusions assigned value of 0.50, <30% stenosis assigned value of 0.90


Study Procedures: FFR_{CT}

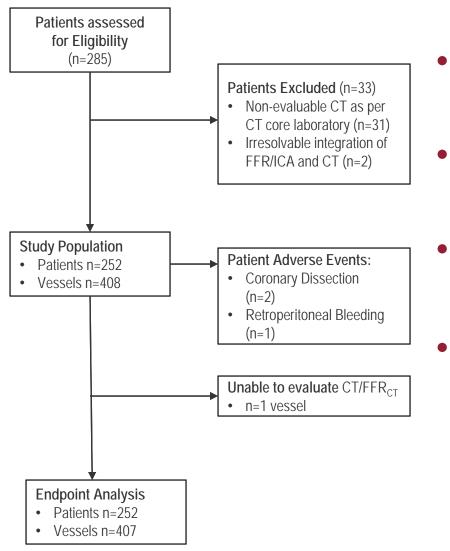
FFR_{CT}: Derived from typical CT

- No modification to imaging protocols
- No additional image acquisition
- No additional radiation
- No administration of adenosine
- Selectable at any point of coronary tree

Patient-Specific Coronary Pressure:


- Image-based modeling
- Heart-Vessel Interactions
- Physiologic conditions, incl. Hyperemia
- Fluid dynamics to calculate FFR_{CT}

Simulation of coronary pressure and flow

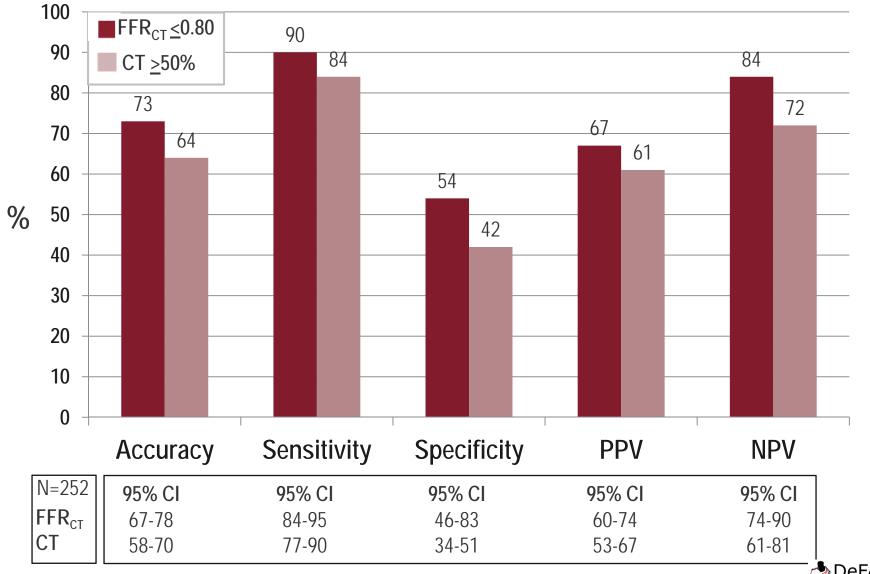


Patient-Specific Computation of FFR_{CT}

- 1. Image-Based Modeling Segmentation of patient-specific arterial geometry
- 2. Heart-Vessel Interactions Allometric scaling laws relate caliber to pressure and flow
- **3**. **Microcirculatory resistance** Mophometry laws relate coronary dimension to resistance
- 4. Left Ventricular Mass Lumped-parameter model couples pulsatile coronary flow to timevarying myocardial pressure
- 5. Physiologic Conditions Blood as Newtonian fluid adjusted to patient-specific viscosity
- 6. Induction of Hyperemia Compute maximal coronary vasodilation
- 7. Fluid Dynamics Navier-Stokes equations applied for coronary pressure

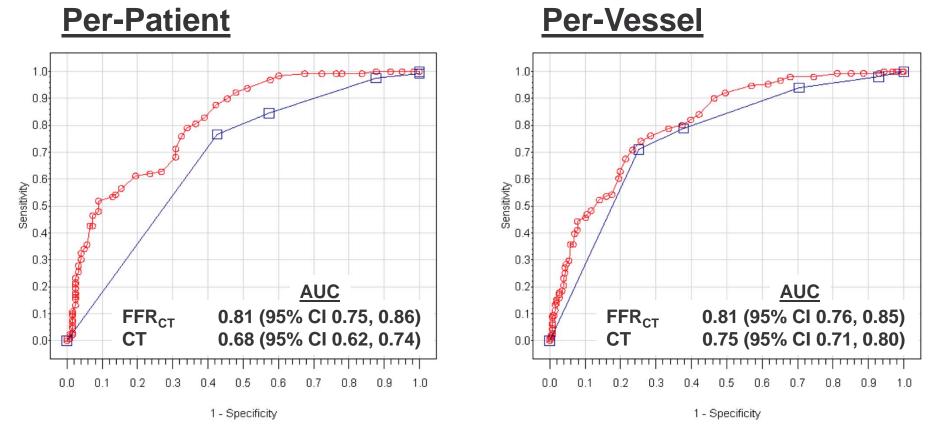
Patient Enrollment

- Study Period
 - October 2010 2011
- Study Sites
 - 17 centers from 5 countries
- Study Enrollment (n=285)
 n=33 excluded
 - Final study population
 - Patients (n=252)
 - Vessels (n=407)


Patient and Lesion Characteristics

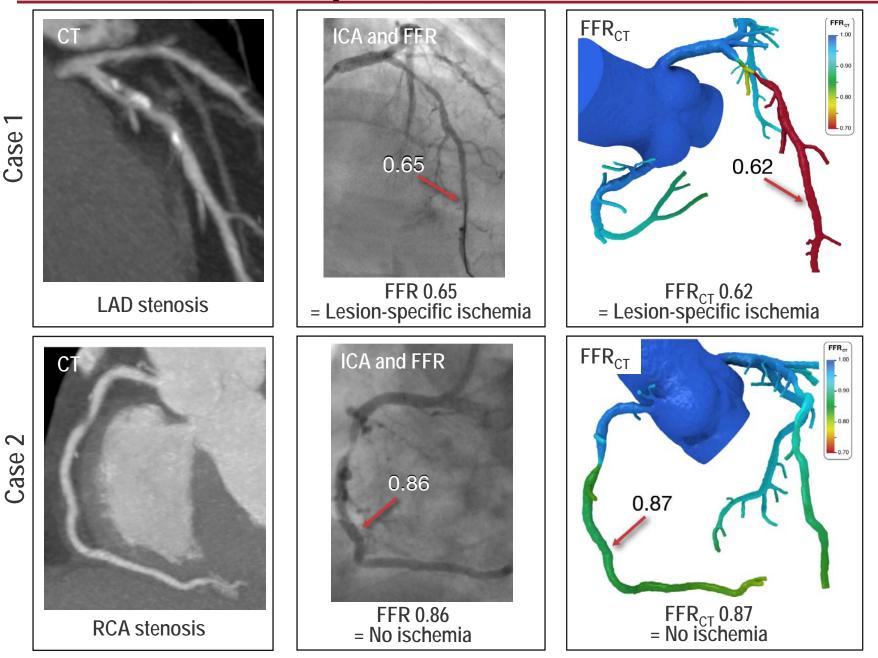
Variable	Mean <u>+</u> SD or %	• ICA
Age (years) Prior MI	63 ± 9 6	− Stenosis ≥50% 47% − Mean Stenosis 47%
Prior PCI Male gender	6 71	• FFR
Race / Ethnicity White Asian Other	67 31 2	- FFR ≤ 0.80 37% • CT - Stenosis $\geq 50\%$ 53%
Diabetes mellitus	21	 Calcium Score Location
Hypertension Hyperlipidemia Family history	71 80 20	• LAD 55% • LCx 22%
Current smoker	18	• RCA 23%

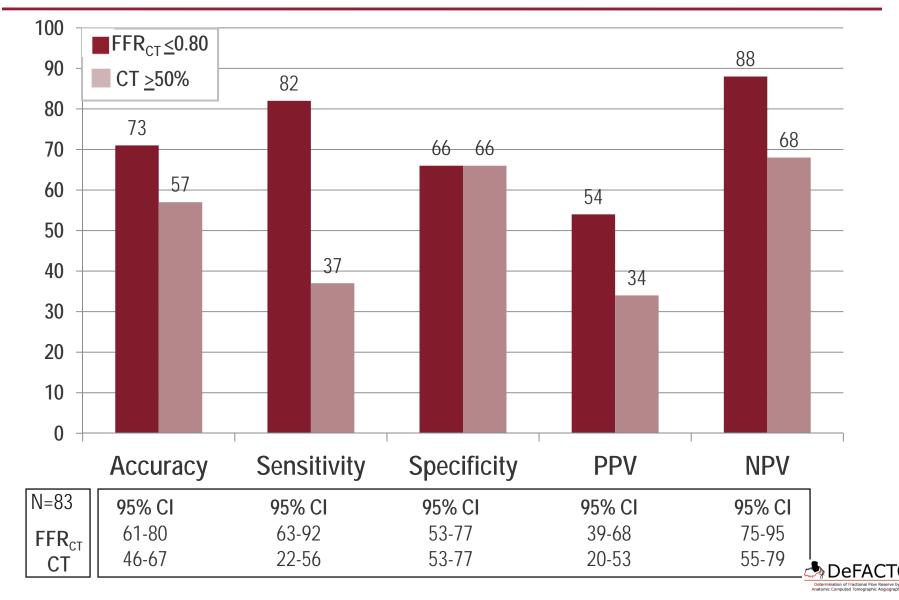
Abbreviations: MI = myocardial infarction; PCI = percutaneous intervention; FH = family history; CAD = coronary artery disease; FFR = fractional flow reserve; CACS = coronary artery calcium score; LAD = left anterior descending artery; LCx = left circumflex artery; RCA = right coronary artery

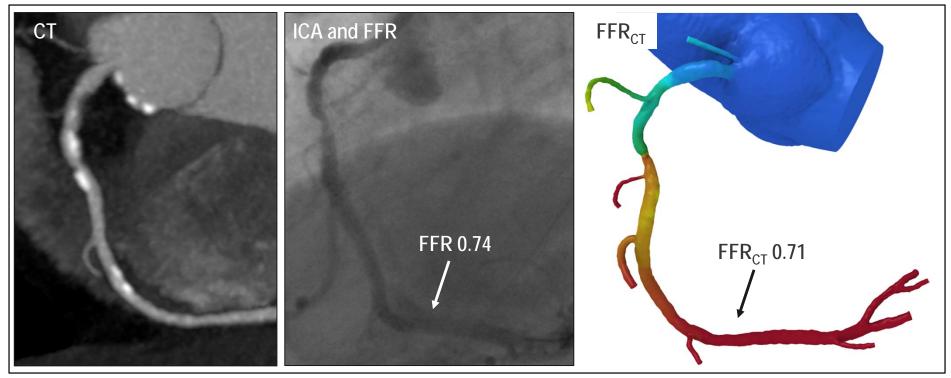


Per-Patient Diagnostic Performance

DeFACTO


Discrimination


- Greater discriminatory power for FFR_{CT} versus CT stenosis
 - Per-patient (Δ 0.13, p<0.001)
 - Per-vessel (Δ 0.06, p<0.001)


Case Examples: Obstructive CAD

Per-Patient Diagnostic Performance for Intermediate Stenoses by CT (30-70%)

Case Example: Intermediate Stenosis

31-49% stenosis CT Core Lab 50-69% stenosis QCA Core Lab

FFR 0.74 = Lesion-specific ischemia FFR_{CT} 0.71 = Lesion-specific ischemia

Limitations

- Did not interrogate every vessel with invasive FFR
- Did not solely enroll patients with intermediate stenosis^{1,2}
- Did not test whether FFR_{CT}-based revascularization reduces ischemia³
- Did not enroll prior CABG / In-Stent Restenosis / Recent MI

Conclusions

- FFR_{CT} demonstrated improved accuracy over CT for diagnosis of patients and vessels with ischemia
 - FFR_{CT} diagnostic accuracy 73% (95% CI 67-78%)
 - Pre-specified primary endpoint >70% lower bound of 95% CI
 - Increased discriminatory power
- FFR_{CT} superior to CT for **intermediate stenoses**
- FFR_{CT} computed **without additional radiation** or imaging
- First large-scale demonstration of patient-specific computational models to calculate physiologic pressure and velocity fields from CT images
- Proof of feasibility of FFR_{CT} for diagnosis of lesion-specific ischemia

Thank you.