The FFR_{CT} RIPCORD Study Does the routine availability of computer tomography (CT)-derived fractional flow reserve (FFR_{CT}) influence management strategy of patients with stable chest pain compared to CT angiography alone? Curzen N¹, Zaman A², Nolan J³, Norgaard B⁴, Rajani R⁵ - ¹ University Hospital Southampton, Southampton, UK - ² Newcastle upon Tyne Hospitals, Newcastle UK - ³ University Hospitals of North Midlands, Stoke, UK - ⁴ Aarhus University Hospital Skejby, Aarhus, Denmark ⁵ St Thomas' Hospital, London, UK #### **Potential conflicts of interest** Speaker's name: Nick Curzen **☑** I have the following potential conflicts of interest to report: **Honorarium**: HeartFlow, ST. JUDE MEDICAL, VOLCANO Institutional grant/research support: BOSTON SCIENTIFIC, Haemonetics, HeartFlow, MEDTRONIC This study was funded by an unrestricted research grant from HeartFlow ## Background - •Invasive fractional flow reserve (FFR) is a well validated & reproducible tool for detection of lesion-level ischaemia. ¹ - •In patients with multivessel disease an FFR-directed PCI strategy is associated with better clinical outcomes compared to angiography-directed PCI (FAME; FAME 2) ^{1,2} - •In RIPCORD, when invasive FFR was available, management was altered in 26% of cases when compared to angiographic assessment alone because of a mismatch between angio- & FFR-derived analyses of lesion "significance" ³ - •Computed tomography (CT)-derived fractional flow reserve (FFR_{CT}) is a novel diagnostic technique that allows derivation of FFR from raw data acquired during CT coronary angiography⁴ - Previous studies have demonstrated excellent diagnostic accuracy for this test - •As yet, however, there are no data to compare the management of patients with stable angina using CT angiography alone versus angiography with FFR_{CT} - 1. Expert Rev Cardiovasc Ther 2013;11:1051-9 - 2. JACC 2014;64:1641-54 - 3. *Circulation: Cardiovascular Interventions 2014;7:248-55.* - 4. Nature Reviews Cardiol 2014, 11: 252 ## Stenosis classification by angiography Tonino et al JACC 2010 Berry et al Eur Heart J 2014 Toth et al EHJ 2014 ## Hypothesis: Proof of Concept In the assessment of patients with stable chest pain, the availability of non-invasive **FFR**_{CT} in addition to coronary anatomy from the CT angiogram: - (1) would lead to a substantial change in the interpretation of lesion-specific "significance" - (2) that this would consequently lead to a change in the management plan in a manner similar to that seen in RIPCORD. #### Primary Endpoint The difference between the management based upon interpretation of the CT angiogram alone compared to the management incorporating the non-invasive **FFR**_{CT} data. #### Secondary Endpoints - 1. The correlation between vessels labelled as "significant" based upon interpretation of the CT angiogram alone versus when **FFR**_{CT} data are available - 2. Comparison between individual coronary arteries labelled as targets for revascularisation based upon the CT angiogram alone compared to FFR_{CT} #### Methods - Three experienced interventional cardiologists (ICs) reviewed 200 consecutive cases of stable angina recruited into the NXT study of FFR_{CT}. ⁵ - In each case the ICs reviewed the CT angiogram in detail, reported the degree of stenoses in the coronaries and then, by consensus, came to a plan of management based upon the anatomic appearances, using 4 options: - (1)Optimal medical therapy (OMT); (2) PCI + OMT; (3) CABG + OMT; (4) more information required (ie meaning invasive FFR needed) - FFR_{CT} data for each case was then revealed, and the ICs then asked to again describe (a) which vessels were significant & (b) make a second management plan based upon these data #### Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease The NXT Trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) JACC 2014 - N=254 - CTA + FFR_{CT} versus invasive angio + FFR Figure 5 AUC of FFR_{CT} Versus Coronary CTA for Demonstration of Ischemia (FFR ≤0.80) on a Per-Patient and Per-Vessel Basis (A) Per-patient; (B) per-vessel. In the per-patient analysis, a FFR_{CT} ≤0.80 was diagnostic of ischemia, and stenosis >50% at coronary CTA was anatomically obstructive. N = 251 for subjects and 484 for vessels. AUC = area under the receiver-operating characteristic curve; other abbreviations as in Figures 2 and 3. #### Methods - Three experienced interventional cardiologists (ICs) reviewed 200 consecutive cases of stable angina recruited into the NXT study of FFR_{CT}. ⁵ - In each case the ICs reviewed the CT angiogram in detail, reported the degree of stenosis(es) in the coronaries and then, by consensus, came to a plan of management based upon the anatomic appearances, using 4 options: - (1)Optimal medical therapy (OMT); (2) PCI + OMT; (3) CABG + OMT; (4) more information required (ie meaning invasive FFR needed) - FFR_{CT} data for each case was then revealed, and the ICs then asked to again describe (a) which vessels were significant & (b) make a second management plan based upon these data #### Methods - Three experienced interventional cardiologists (ICs) reviewed 200 consecutive cases of stable angina recruited into the NXT study of FFR_{CT}. ⁵ - In each case the ICs reviewed the CT angiogram in detail, reported the degree of stenoses in the coronaries and then, by consensus, came to a plan of management based upon the anatomic appearances, using 4 options: - (1)Optimal medical therapy (OMT); (2) PCI + OMT; (3) CABG + OMT; (4) more information required (ie meaning invasive FFR needed) - FFR_{CT} data for each case was then revealed, and the ICs then asked to again describe (a) which vessels were significant & (b) make a second management plan based upon these data #### Noninvasive Fractional Flow Reserve Derived From Computed Tomography Angiography for Coronary Lesions of Intermediate Stenosis Severity **Results From the DeFACTO Study** Circ Cardiovasc Imaging 2013 University Hospital Southampton NHS Foundation Trust #### Results Degree of angiographic stenosis on CT versus FFRCT >/<0.8 #### Results Management options chosen based upon CT angio alone and after FFR_{CT} data revealed n=200 | | CT Angio Alone | With FFR _{ct} | % change | |-----------|----------------|------------------------|----------| | More data | 38 (19.0 %) | 0 | - | | OMT | 67 (33.5 %) | 113 (56.5 %) | + 23 % | | PCI | 87 (43.5 %) | 78 (39.0 %) | - 5% | | CABG | 8 (4.0 %) | 9 (4.5 %) | + 0.5 % | P<0.001 by Chi-squared test Overall there was a change in management in 72 (36%) of cases In 16 cases (18%) of angio-directed PCI cases the vessel(s) specified as PCI target changed after FFR_{CT} ## Results n= 200 cases # Detailed description of change in angio-directed management after FFR_{CT} revealed #### CONCLUSIONS - •This study demonstrates a mismatch between CT angiographic assessment of lesion severity & the FFR_{CT}-derived estimate of ischaemia - •The addition of FFR_{CT} data to CT angiography alone led to a change in management in 36% of cases in this study - These results are consistent with those of the invasive RIPCORD study - •If this novel proof of concept result can be confirmed in large scale trials, this suggests that non-invasive FFR_{CT} can be used as a clinically relevant tool that mimics the well-described ability of invasive FFR to refine management decisions for patients with chest pain that are made based upon ICA alone. - This would have important implications for routine clinical practice. - •FFR_{CT} may have potential as a default method for assessment of coronary anatomy and physiology in angina patients in order to define their management