

Transcatheter Mitral Valve Replacement with the Edwards FORTIS Valve: Procedural and Midterm Results of the First-in-Man Compassionate Clinical Use Experience

Josep Rodés-Cabau, MD Quebec Heart & Lung Institute, Laval University

Potential conflicts of interest

Speaker's name: Josep Rodés-Cabau

I have the following potential conflicts of interest to report: Research grants from Edwards Lifesciences

- <u>Quebec Heart & Lung Institute, Quebec City, Canada</u> François Dagenais, Eric Dumont, Mario Senechal, Kim O'Connor, Mathieu Bernier, Omar Abdul-Jawad Altisent, Josep Rodés-Cabau
- <u>St Thomas' Hospital, London, England</u> Vinayak N Bapat, Martyn Thomas, Jane Hancock
- <u>St Paul's Hospital, Vancouver, Canada</u> Jian Ye, John Webb, Brad Munt, Robert Moss
- <u>St Michael's Hospital, Toronto, Canada</u> Mark Peterson, Neil Fam, Han Kim
- <u>Bern University Hospital, Bern, Switzerland</u> Stephan Windecker, Lutz Buellesfeld, Fabian Praz

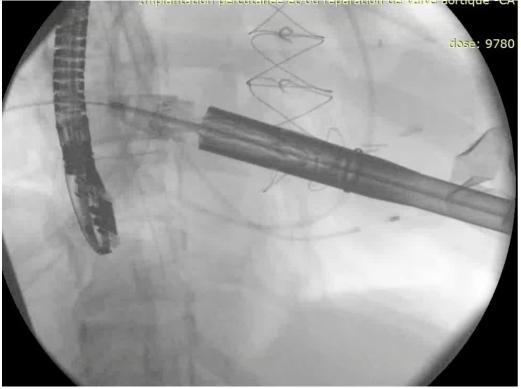
Background

- Severe mitral regurgitation (MR) represents the second most prevalent valvular heart disease in western countries
- Up to one third to one half of patients requiring mitral valve repair/replacement are deemed to be at too high risk for surgery
- Percutaneous mitral edge-to-edge repair has emerged as a valid alternative to surgery but requires a favorable anatomy
- Transcatheter mitral valve replacement (TMVR) has recently emerged as a new therapeutic option for the treatment of mitral valve disease – however, current experience is very limited

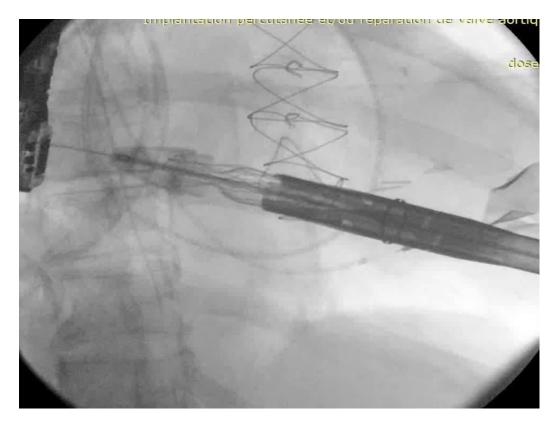
 To evaluate the procedural results and follow-up outcomes of the first-in-human experience of transcatheter mitral valve replacement (TMVR) with the Edwards FORTIS valve

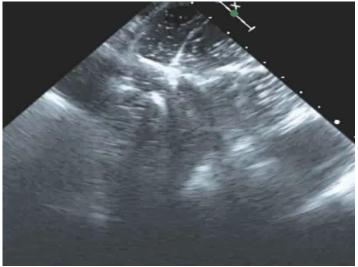
PCR 2015 The Edwards FORTIS Valve

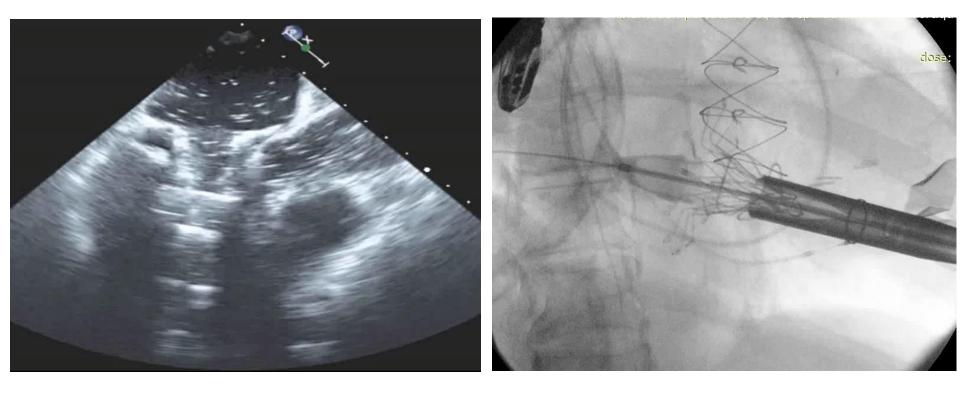
- Self-expanding Nitinol
- 29 mm
- Proven Edwards bovine pericardial tissue
- Anti-calcification



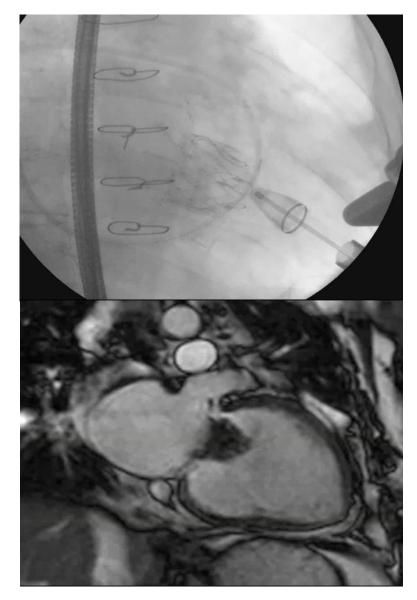
- 42 Fr
- Multiple levels of control
- Repositionable

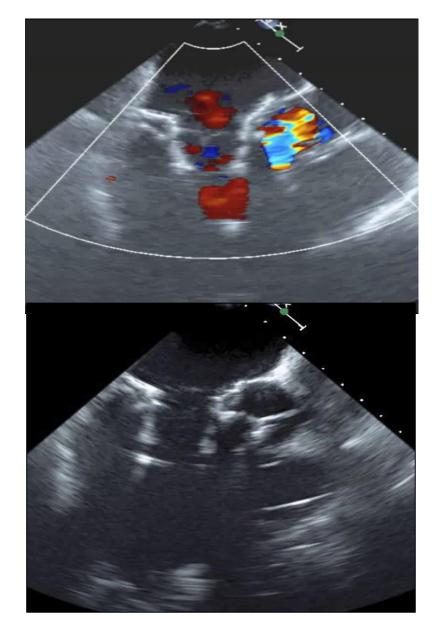

PCR 2015 Procedure I – Leaflet Capture





PCR 2015 Procedure II – Flange Release




PCR 2015 Procedure III – Valve Release

Procedural Result

Methods

- 13 patients treated with the FORTIS Valve (Europe and Canada) between February 2014 to March 2015
- Pre-procedural workup: clinical evaluation, TTE, TEE and CT scan
- Procedural and 30-day outcomes
 - Procedural success: Absence of procedural mortality, correct positioning of the prosthetic valve into the proper anatomical location, and no more than mild MR
 - Peri-procedural complications: VARC-2 criteria
- Follow-up: clinical and TTE (1- and 6-month follow-up)
- Imaging (CT scan and TEE) at 3-month follow-up (single center)
- Functional and QoL evaluation at baseline, 3- and at 6-month follow-up (single center)
 - Functional: 6MWT, DASI
 - QoL: Kansas City Cardiomyopathy Questionnaire

PCR 2015

Results: Baseline Characteristics

	N=13
Age (years)	71±8
Sex (male)	10 (76.9)
NYHA Class ≥ III	13 (100)
Coronary artery disease	10 (76.9)
Previous CABG	7 (53.8)
Atrial fibrillation/flutter	8 (61.5)
Previous Stroke/TIA	3 (23.1)
COPD	5 (38.5)
Clearance of creatinine (mL/min)	43 ± 10
Heart failure hospitalizations (last year)	9 (75)
CRT	3 (23.1)
STS Score (%)	7.2 ± 3.6
Log. EuroSCORE (%)	23.7 ± 12.1
Baseline Echocardiogram	
LVEF (%)	34±9
MR etiology	
Functional	12 (92.3)
Mixed (functional + degenerative)	1 (7.7)
MR grade: Severe	13 (100)
PAPs (mmHg)	59±15

	N=13
Procedural success	10 (76.9)
Conversion to open heart surgery	2 (15.4)
Procedure time (min)	48±19
Hospitalization length (days)	10±6
In-hospital mortality	4 (30.8)
Anti-thrombotic therapy at discharge (n=9)	
Warfarin alone	2 (22.2)
Warfarin+ASA	5 (55.6)
Warfain+ASA+clopidogrel	1 (11.1)
ASA alone	1 (11.1)
30-day Results	
Mortality	5 (38.5)
Stroke or TIA	0 (0)
Probable prosthesis thrombosis	1 (7.7)
Major bleeding	2 (15.4)
Echo at discharge (n=9)	
LVEF (%)	31±12
MR	
none-trace	8 (88.9)
mild	1 (11.1)
Transmitral gradient (mean, mmHg)	3±1

	IN-13
Procedural success	10 (76.9)
Conversion to open heart surgery	2 (15 /)
Conversion to onen heart surgery	<u>) (15 /)</u>

Unsuccessful Procedures

- **Case #2.** Valve was not properly implanted due to partial posterior leaflet capture. Patient died on day #4 due to multi-organ failure. Autopsy confirmed that there was no posterior leaflet capture.
- **Case #8.** Valve was implanted with suboptimal short axis echo images, posterior leaflet was not fully captured. Patient was converted to surgery but died on day #7 due to septic shock.
- **Case #12.** Catheter balloon entanglement with subvalvular apparatus prior to delivery system insertion. Valve implantation was not attempted. Patient was converted to open surgery but died on day #3 due to intestinal ischemia.

Transmitral gradient (mean, mmHg)

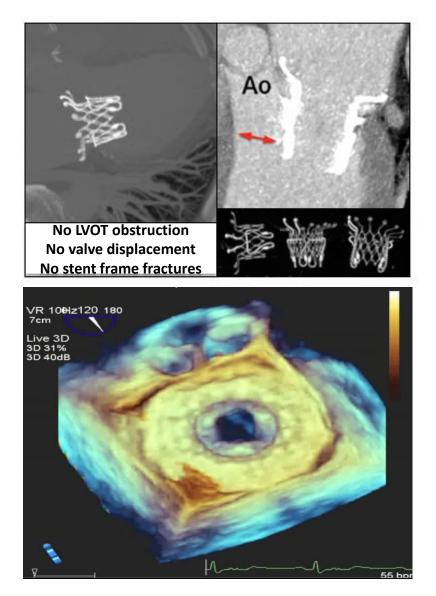
 3 ± 1

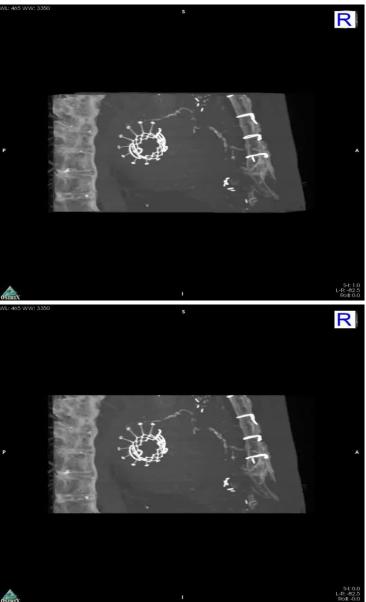
	N=13
Procedural success	10 (76.9)
Conversion to open heart surgery	2 (15.4)
Procedure time (min)	48±19
Hospitalization length (days)	10 ± 6
In-hospital mortality	4 (30.8)
Anti-thrombotic therapy at discharge (n=9)	
Warfarin alone	2 (22.2)
Warfarin+ASA	5 (55.6)
Warfain+ASA+clopidogrel	1 (11.1)
ASA alone	1 (11.1)
30-day Results	
Mortality	5 (38.5)
Stroke or TIA	0 (0)
Probable prosthesis thrombosis	1 (7.7)
Major bleeding	2 (15.4)
Echo at discharge (n=9)	
LVEF (%)	31±12
MR	
none-trace	8 (88.9)
mild	1 (11.1)
Transmitral gradient (mean, mmHg)	3±1

	N=13
Procedural success	10 (76.9)
Conversion to open heart surgery	2 (15.4)
Procedure time (min)	48 ± 19
Hospitalization length (days)	<u> 10 ± 6</u>

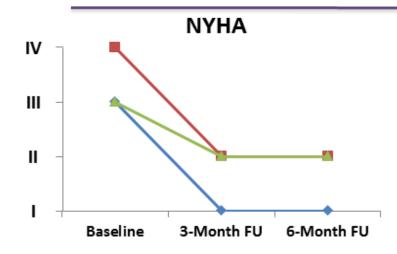
30-day Death

- Case #4. Successful procedure. Patient was discharged under warfarin + ASA on day 8. Re-Hospitalization on day #13 (chest pain). Mass at the level of the valve, increased transmitral gradient. Patient died on day #15 due to suspected valve thrombosis.
- **Case #13.** Successful procedure. Patient died on day #26 due to respiratory failure (severe pre-op malnutrition and poor condition).

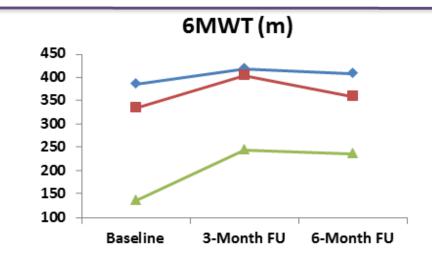

LVEF (%)	31 ± 12	
MR		
none-trace	8 (88.9)	
mild	1 (11.1)	
Transmitral gradient (mean, mmHg)	3 ± 1	

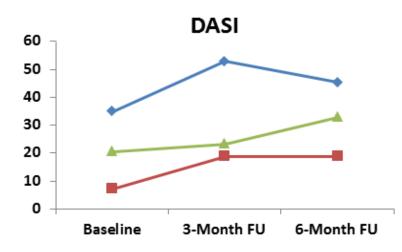

	N=13
Procedural success	10 (76.9)
Conversion to open heart surgery	2 (15.4)
Procedure time (min)	48±19
Hospitalization length (days)	10±6
In-hospital mortality	4 (30,8)
Anti-thrombotic therapy at discharge (n=9)	
Warfarin alone	2 (22.2)
Warfarin+ASA	5 (55.6)
Warfain+ASA+clopidogrel	1 (11.1)
ASA alone	1 (11.1)
30-day Results	
Mortality	5 (38.5)
Stroke or TIA	0 (0)
Probable prosthesis thrombosis	1 (7.7)
Major bleeding	2 (15.4)
Echo at discharge (n=9)	
LVEF (%)	31±12
MR	
none-trace	8 (88.9)
mild	1 (11.1)
Transmitral gradient (mean, mmHg)	3±1

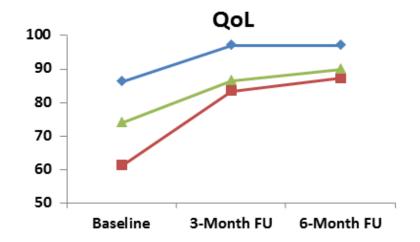
PCR 2015 Follow up: Clinical and TTE


	N=8
Clinical follow-up time (months) NYHA Functional Class I-II Re-hospitalizations Heart failure re-hospitalization Stroke/TIA Mortality, any cause	6 (1 - 15) 6 (75.0) 2 (25.0) 1 (12.5) 0 (0.0) 1 (12.5)
Echocardiography data (6-month FU) LVEF (%) MR none-trace mild moderate or severe Transmitral gradient (mean, mmHg) PAPs (mmHg)	33 ± 9 4 (80) 1 (20) 0 (0) 4 ± 1 57 ± 23

PCR CT scan & TEE at 3 months 2015 (n=3; Quebec Heart & Lung Institute)


3- and 6-Month FU Functional and QoL Evaluation (n=3; Quebec Heart & Lung Institute)




euro

PCR

2015

DASI : Duke Activity Status Index Quality of Life evaluated by Kansas City Questionnaire

PCR 2015

Conclusions

- This first-in-man experience showed the feasibility of TMVR with the Edwards FORTIS valve
- Proper valve implant was associated with optimal valve performance in all cases
- Implantation and peri-procedural challenges may reflect the excessive risk of some of the selected patients, the complexity of the mitral valve system and the learning curve process
- Anticoagulation treatment is probably important for mitral transcatheter valves, and the optimal type and duration of antithrombotic treatment need to be further evaluated
- Valve performance was maintained at 6-month follow-up and was associated with improvements in functional status and QoL
- Larger studies with a longer follow-up are warranted