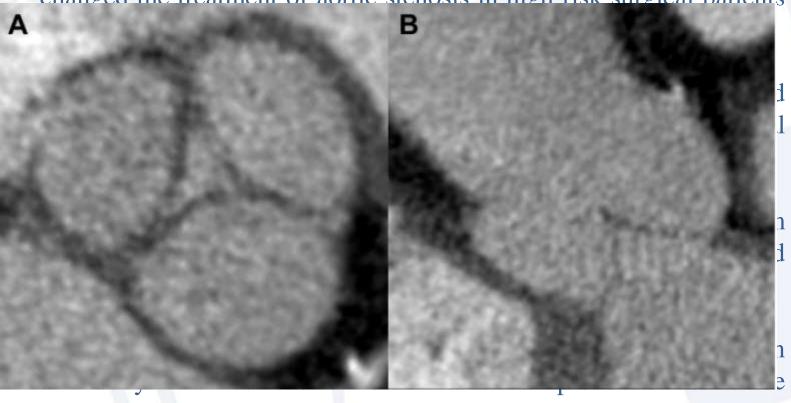


TAVI EN INSUFICIENCIA AORTICA

Cesar Moris
Profesor Cardiología
Director Departamento del Corazón
Hospital Universitario Central de Asturias
Universidad de Oviedo
OVIEDO -- ESPAÑA

CONFLICTO DE INTERESES

- Proctor de Corevalve
- Miembro advisory board Medtronic



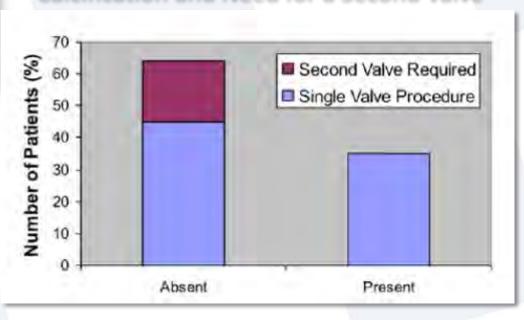
Conclusions—Early SVD is frequent in Mitroflow bioprosthesis (models 12A/LX), especially for small sizes (19 and 21 mm) and reduces overall survival. An unpredictable accelerated pattern of SVD constitutes a life-threatening condition. In view of the large number of Mitroflow valves implanted worldwide, one can expect an epidemic of SVD and valve-related deaths, which represents a major public health issue, especially in the elderly. Hence, a close follow-up with yearly echocardiography after Mitroflow implantation is advisable. An urgent redo surgery should be discussed in patients with severe SVD even though still asymptomatic.

Introduction

• Transcatheter aortic valve implantation (TAVI) has substantially changed the treatment of aortic stenosis in high-risk surgical patients

migration

Transcatheter Aortic Valve Implantation for Pure Severe Native Aortic Valve Regurgitation


J Am Coll Cardiol 2013;

Patients = 43

Table 2	Mechanism of Aortic Regurgitation	
Degenerativ	e	27 (62.8)
Post-endoca	arditis	6 (14.0)
Aortic aneurysm		4 (9.3)
	cusp restriction due to rheumatoid vasculitis, r's arteritis, unknown	3 (7.0)
Post-radioth	erapy	2 (4.7)
Chronic diss	section	1 (2.3)

Outcome according to VARC		
Valve implanted	97,7%	
2 valve needed	18,6%	
CV Mortality 30 days	2,3%	
CV Mortality 12 mon	10,7%	
Major stroke 30 days	4,7%	

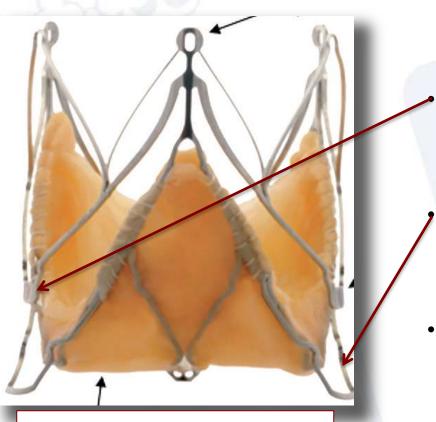
Relationship Between Aortic Valve Calcification and Need for a Second Valve

Transcatheter Aortic Valve Implantation for Pure Severe Native Aortic Valve Regurgitation

J Am Coll Cardiol 2013;

Patients = 43

Table 2	Mechanism of Aortic Regurgitation	
Degenerativ	ve	27 (62.8)
Post-endoca	arditis	6 (14.0)
Aortic aneu	rysm	4 (9.3)
	cusp restriction due to rheumatoid vasculitis, u's arteritis, unknown	3 (7.0)
Post-radioth	nerapy	2 (4.7)
Chronic diss	section	1 (2.3)

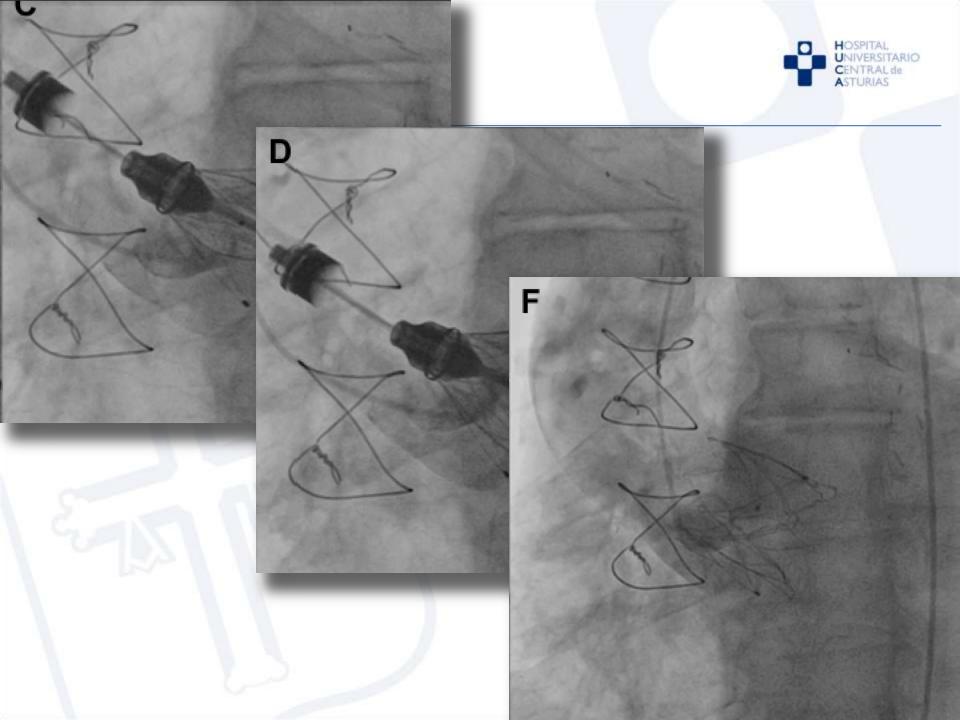

This <u>registry analysis demonstrates the feasibility</u> and potential procedure difficulties when using TAVI for severe NAVR.

Outcome according to VARC			
Valve implanted	97,7%		
2 valve needed	18,6%		
CV Mortality 30 days	2,3%		
CV Mortality 12 mon	10,7%		
Major stroke 30 days 4,7%			

Acceptable results may be achieved in carefully selected patients who are deemed too high risk for conventional surgery, but the possibility of requiring 2 valves and leaving residual aortic regurgitation remain important considerations.

JenaValve

Key design features


Contains three so-called feelers that should be planted in the proper coronary cusp.

The JenaClip™ is an intrinsic mechanism to clip the JenaValve prosthesis onto the native valve leaflets for active fixation.

Repositionable and retrievable

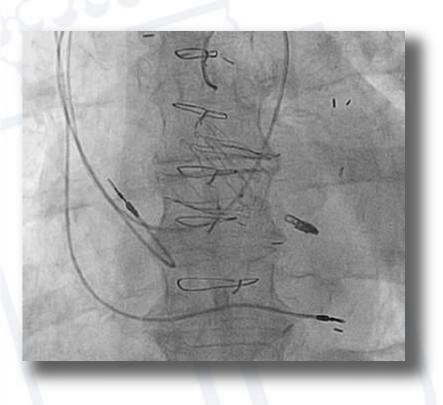
Porcine aortic root / Nitinol

Is the only transcatheter heart valve design with a <u>CE MARK</u> <u>EXPANSION FOR SEVERE AORTIC</u> insufficiency in 2013

Transapical Implantation of a Second-Generation Transcatheter Heart Valve in Patients With Noncalcified Aortic Regurgitation

JACC Cardiovasc. Interv 2013; 6:590–597

Trans Apical 5 patients


30 days results	%
Procedural success	100
Death	0
Access complications	NA
> mild A Regurgitation	0
All Stroke	NA
New PM	NA

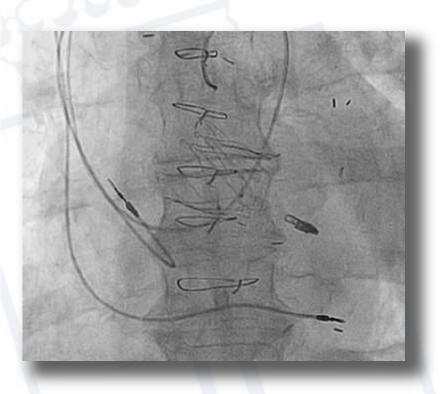
Jena valve Prosthesis May Be A Reasonable Option In These Specific Patients Due To Its Unique Stent Design, Clipping The Native Aortic Valve Leaflets

Transcatheter aortic valve implantation of a second-generation valve for pure aortic regurgitation: procedural outcome, haemodynamic data and follow-up

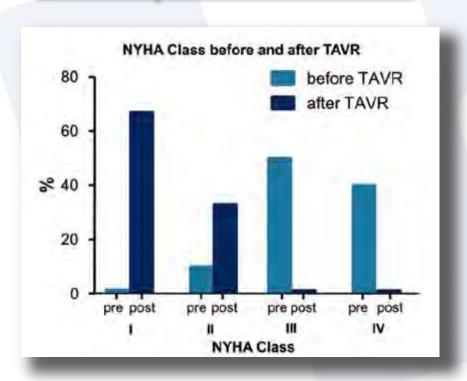
Interactive CardioVascular and Thoracic Surgery (2014) 1–6

Trans Apical JENA valve

10 patients


2 MitraClips 1 Amplatzer

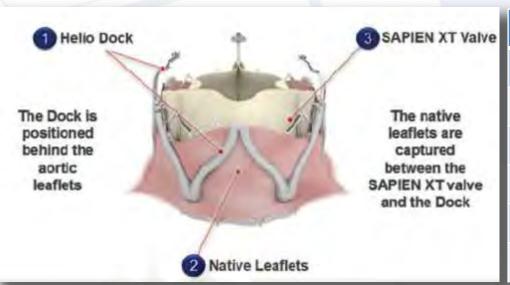
30 days results	%
Procedural success	100
Death	30 (3)
Access complications	0
> mild A Regurgitation	0
All Stroke	0
New PM	20 (2)


Transcatheter aortic valve implantation of a second-generation valve for pure aortic regurgitation: procedural outcome, haemodynamic data and follow-up

Interactive CardioVascular and Thoracic Surgery (2014) 1–6

Trans Apical JENA valve

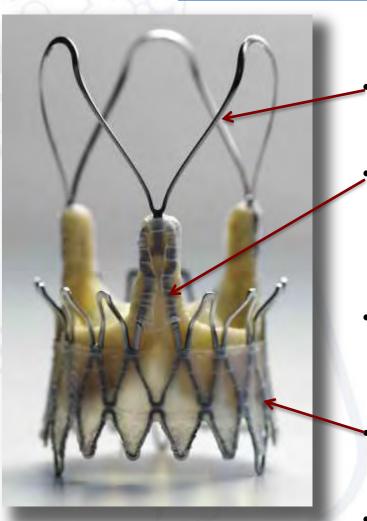
Treatment of AR by a TA TAVI approach with the Jena valve is technically feasible with satisfying short-term results concerning haemodynamics and device success


Feasibility trial reports deployment of new device for TAVI in aortic insufficiency

European Heart Journal 2013; 34: 2578

Trans Apical or Trans Femoral

First 4 patients



30 days results	%
Procedural success	100
Death	0
Access complications	0
> mild A Regurgitation	0
All Stroke	25 (1)
New PM	NA

J Am Coll Cardiol Intv 2014

Key design features

Porcine / Nitinol

The distal/aortic edge of the frame contains three stabilisation arches.

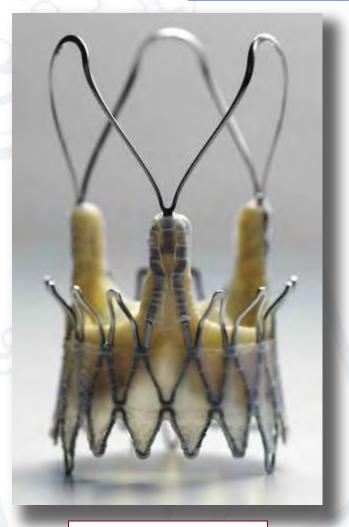
The upper-crown segment of the stent contains the valve leaflets (which are also placed supra-annularly) and provide supra-annular anchoring.

The lower crown is the stent edge that minimally resides within the left ventricular outflow tract.

A PET sealing skirt is mounted around the intra-annular part of the stent.

18 Fr sheath compatible.

J Am Coll Cardiol Intv 2014

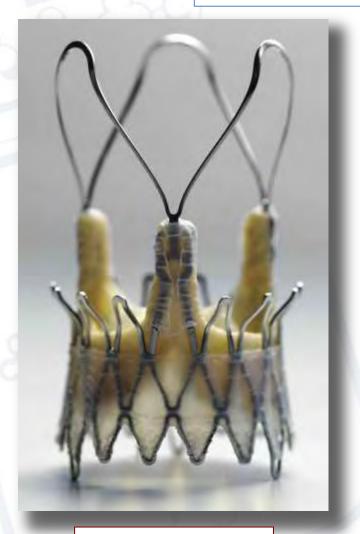


Comorbidities **Etiology of AR** Secondary AR after failed Previous aortic surgery, systemic hypertension, neurological aortic root repair dysfunction CABG surgery 2006, diabetes, Sclerotic-degenerative previous multiple PCIs. systemic hypertension, obesity, severe COPD (FEV1, 53.4%, steroids, long-term use of bronchodilators) Previous aortic surgery with Secondary AR after failed persisting aortic type B aortic root repair dissection, severe COPD (FEV), 47.5%, long-term use of bronchodilators), renal insufficiency, systemic hypertension Sderotic-degenerative CABG surgery 2001, dialysis, systemic hypertension Previous PCI, systemic hypertension, Sclerotic-degenerative atrial fibrillation, peripheral artery disease, obesity Severe COPD (FEV₁ 51.2%, long-term Sclerotic-degenerative use of bronchodilators), renal insufficiency, previous PCI, systemic hypertension, atrial fibrillation Emergency TAVR with preoperative Sclerotic-degenerative inotropes, previous PCI, cardiac tamponade due to catheterization Previous PCI, cardiac Scherotic-degenerative

decompensation.

J Am Coll Cardiol Intv 2014

Aortic Regurgitation (TA)


8 consecutive Patients

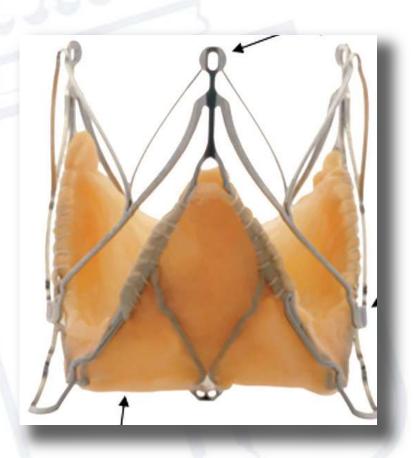
30 days results	%
Procedural success	100
Death	0
V. complications	0
< mod A Regurgitation	0
All Stroke	0
New PM	0

Porcine / Nitinol

J Am Coll Cardiol Intv 2014

Aortic Regurgitation (TA)

8 consecutive Patients


- The valve hemodynamic findings were satisfactory and comparable to conventional valves.
- Furthermore, the specific architecture of the bioprosthesis lends itself to secure annular placement and alignment in the native anatomy of the noncalcified aortic valve

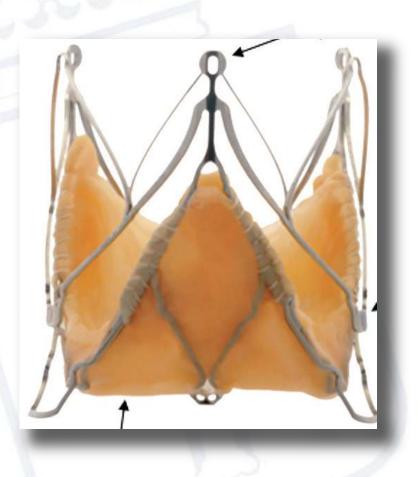
Porcine / Nitinol

Initial German Experience With Transapical Implantation of a Second-Generation Transcatheter Heart Valve for the Treatment of Aortic Regurgitation

J Am Coll Cardiol Intv 2014

Aortic Regurgitation (TA)

31 Patients / 9 German centers

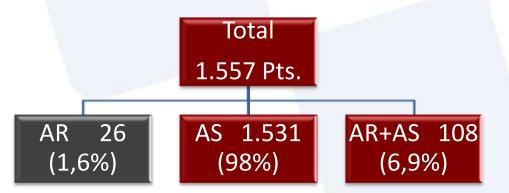

30 days results	%
Procedural success	96,8
Death	13
V. complications	0
< mod A Regurgitation	0
All Stroke	0
New PM	6,4% (2)
Valve in valve	10% (3)

Jena Valve transcatheter heart valve as a reasonable option in this subset of patients

Initial German Experience With Transapical Implantation of a Second-Generation Transcatheter Heart Valve for the Treatment of Aortic Regurgitation

J Am Coll Cardiol Intv 2014

- Aortic regurgitation remains a challenging pathology for TAVI.
- This multicenter study revealed the Jena Valve transcatheter heart valve as a reasonable option in this subset of patients.
- However, a significant early non cardiac mortality related to the high-risk population emphasizes the need for careful patient selection.



EuroIntervention 2014;10:739-745

Italian Registry

October 2008 to January 2013

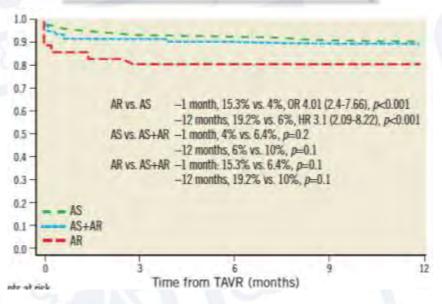
EuroIntervention 2014;10:739-745

	AR (26 patients)	AS (1,531 patients)	AS + AR* (108 patients)	p#
Age (yrs), mean (SD)	73±10	82±6	81±4	0.02
NYHA III-IV (%)	25 (95)	1,118 (73)	78 (72)	0.01
Log EuroSCORE, mean (SD)	24±8	22±16	23±12	0.09
STS risk score (%)	13.1±2	10±3	11±2	80.0
Diabetes (%)	5 (21)	367 (24)	25 (23)	0.7
Creatinine clearance, ml/ min, mean (SD)	48.4 (22.6)	46.9 (21.9)	47.5 (20.7)	0.09

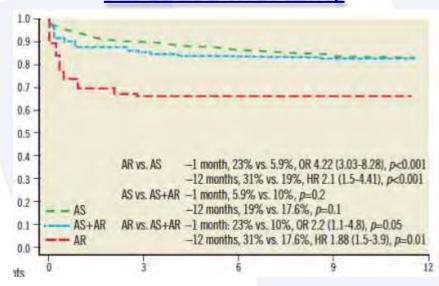
Patients with AR were:

- Younger
- More symptomatic
- Sicker

EuroIntervention 2014;10:739-745


Procedural data

		AR (26 patients)	AS (1,531 patients)	AS+AR* (108 patients)	p *
+	Post-procedural paravalvular leak ≥2 (%)	23	4	4	<0.01
-	Residual transaortic gradient >15 mmHg, N (%)	0	15 (1)	0	0.1
-	Post-dilation, N (%)	3 (10)	199 (13)	13 (12)	0.7
+	"Valve-in-valve", N (%)	5 (19.2)	69 (4.5)	5 (4.6)	<0.001
-	Device success, %	76.9	96	96	0.006


OSPITAL NIVERSITARIO INTRAL de ITURIAS

EuroIntervention 2014;10:739-745

Cardiovascular mortality

All cause mortality

The present study shows that TAVR may have a beneficial role, considering the ominous prognosis of inoperable patients

Summary

- Transcatheter aortic valve implantation (TAVI) is feasible in patients with AR.
- Patients with AR present specific technical issues during implantation considering that this subset of patients often shows a large LV outflow tract, large aortic roots and non calcified annulus.
- The possibility of requiring 2 valves and leaving residual aortic regurgitation remain important considerations.
- Probably specific devices with active fixation mechanisms could obtain best results.
- Only specifically designed studies may provide insights into this issue

Muchas gracias por su atención