

Repositionable Percutaneous Replacement of a Stenotic Aortic Valve through Implantation of the Lotus Valve System

30-day Outcomes for the First 60 Patients in the REPRISE II Study

Ian T. Meredith AM

MBBS, PhD, FRACP, FCSANZ, FACC, FAPSIC Monash HEART, Southern Health & Monash University Melbourne, Australia On behalf of the REPRISE II Investigators

Disclosures

Ian T. Meredith AM

- Consultant Fee / Honoraria / Speaker's Bureau:
 - Boston Scientific (Modest)
 - Medtronic (Modest)

The REPRISE II study is sponsored and funded by Boston Scientific Corporation.

Early TAVI Devices for Severe Aortic Stenosis Keprise

- Significant benefit for inoperable/high risk patients
- Shortcomings with current devices & clinical complications
 - Paravalvular leak
 - Association with increased mortality*
 - Valve malpositioning
 - Valve migration, embolization, ectopic deployment, TAV-in-TAV
 - Stroke

Improvements needed to prevent undesirable outcomes

- Reduce aortic regurgitation
- Simple, precise & atraumatic aortic/ventricular repositioning
- Full atraumatic retrieval

Lotus Valve System

1. Preloaded delivery system

2. Simple handle design

Center Marker

- 3. Central radiopaque marker to aid precise positioning
- 4. Functions early enabling controlled deployment
- 5. Fully retrievable and repositionable
- 6. Adaptive seal designed to minimize paravalvular leak

Study Design REPRISE II

• OBJECTIVE

Evaluate safety & performance of the Lotus Valve System for TAVI in symptomatic patients with severe calcific aortic stenosis who are considered high risk for surgical valve replacement

DESIGN

Prospective; single-arm; multicentre; f/u at 7 days/discharge, 30 days, 3 & 6 months, 1 year & annually through 5 years

- PRIMARY ENDPOINT DEVICE PERFORMANCE Mean aortic valve pressure gradient at 30 days compared to a performance goal of 18 mmHg
- PRIMARY ENDPOINT SAFETY 30-Day all-cause mortality

Additional REPRISE II Endpoints VARC 2 Metrics

Safety

- Cardiovascular mortality
- Stroke
- Life-threatening/disabling bleed
- Acute kidney injury (Stage 2/3)
- Coronary obstruction (periproc.)
- Major vascular complications
- Repeat procedure for valve dysfunction
- MI (periprocedural & spontaneous)
- Hospitalization for valve-related symptoms or CHF
- New permanent pacemaker
- New-onset atrial fibrillation
- Prosthetic valve endocarditis, thrombosis, migration, embolization
- Cardiac tamponade (periproc.)

Effectiveness

- NYHA class
- 5-meter gait speed (1 year vs. baseline)
- Quality of Life assessments
- Neurological assessments (NIHSS/mRS)

Valve Performance/Echocardiography

- Successful access, delivery, deployment, delivery system retrieval
- Success repositioning, if needed
- Successful valve retrieval, if needed
- Correct valve positioning
- Effective orifice area
- Mean & peak aortic valve gradients
- Peak aortic velocity
- Aortic valve regurgitation grade

REPRISE II Key Inclusion Criteria

- Age ≥70 years
- Documented calcified native aortic stenosis
 - AVA <1.0 cm² (or AVA index <0.6 cm²/m²) plus either mean pressure gradient >40 mmHg or jet velocity >4 m/s (by echocardiography)
- High risk for surgical AVR
 - STS score ≥8% AND/OR documented heart team agreement of high risk due to frailty or comorbidities
- Symptomatic aortic valve stenosis with NYHA Class ≥II
- Aortic annulus size 19-27 mm
 - 23 mm & 27 mm valve sizes used

REPRISE II Key Exclusion Criteria

Anatomic

- Unicuspid/bicuspid aortic valve, prosthetic valve or ring
- \geq 3+ mitral or \geq 3+ aortic regurgitation
- LVEF <30%
- Femoral artery lumen <6.0 mm (23mm valve) / <6.5 mm (27mm valve)

Clinical

- AMI within 30 days
- CVA or TIA within 6 months
- Dialysis dependent or Cr >3.0 mg/dL
- Cardiogenic shock or hemodynamic instability
- Any therapeutic invasive cardiac procedure within 30 days
- GI bleed within 3 months
- Life expectancy <12 months due to non-cardiac, co-morbid conditions

REPRISE II Study Organization

PRINCIPAL INVESTIGATOR Ian T. Meredith, MBBS, PhD, Monash Medical Centre, Clayton, Australia

CORE LABORATORIES Angiography & CT/X-ray	Jeffrey J. Popma, Harvard Medical Deaconess Medic	MD (Director) Faculty Physicians at Beth Israel cal Center, Boston, MA, USA
Echocardiography	Neil J. Weissman, MD (Director) MedStar Health Research Institute, Washington, DC, USA	
Electrocardiography	Peter J. Zimetbaum, MD (Director) Harvard Clinical Research Institute, Boston, MA, USA	
Pathology	Renu Virmani, MD (Director) CV Path Institute, Inc., Gaithersburg, MD, USA	
CLINICAL EVENTS COM Sergio Waxman, MD (Carey Kimmelstiel, M	IMITTEE IC, Chair) D (IC)	Gregory Smaroff, MD (CT Surg) Roberto Rodriguez, MD (CT Surg) Viken Babikian, MD (Neurologist)

Enrollment REPRISE II – First 60 Patients

Investigator	Patients*
lan Meredith Monash Medical Centre, Clayton, Australia	19
Darren Walters The Prince Charles Hospital, Brisbane, Australia	18
Stephen Worthley Royal Adelaide Hospital, Adelaide, Australia	9
Didier Tchétché Clinique Pasteur, Toulouse, France	5
Robert Whitbourn St. Vincent's Hospital (Melbourne), Fitzroy, Australia	4
Nicolas Dumonteil Centre Hôpital Universitaire Rangueil, Toulouse, Fra	nce 4
Gilles Rioufol Hôpital Cardiologique de Lyon, Bron, France	1

^{*}Enrolled October 2012 through January 2013

Study Flow Intent-To-Treat Population (First 60 Patients)

B R	aseline Demographics EPRISE II – First 60 Patients	Reprise
	Parameter	Patients
	Age (Years)	85.5±4.3 (60)
	Gender (Female)	63.3% (38)
	STS Score (v 2.73) (%)	6.4±3.0 (60)
	euroSCORE 2011 (%)	6.7±5.1 (60)
	NYHA Class III or IV	75.0% (45)
	Diabetes, treated	25.0% (15)
	Hypertension, history	85.0% (51)
	Atrial fibrillation, history	38.3% (23)
	Coronary artery disease	60.0% (36)
	Cerebrovascular accident	5.0% (3)
	COPD, mod/severe	11.7% (7)

Baseline Frailty, Disability, & Comorbidity Reprise REPRISE II – First 60 Patients

Parameter	F Patients	railty/Disability Threshold
Body Mass Index (kg/m ²)	27.3±5.9	< 19
5 Meter gait speed (sec)	8.5±4.1	> 6
Falls in the past 6 months	0.3±0.8	> 1
Max grip strength average (kg)	15.0±6.6	≤ 18
Katz Index	5.8±0.7	< 6
Charlson Comorbidity Index Score	2.2±1.6	> 3
Mini-Cognitive Assessment for Dementia	3.6±1.4	< 4

Baseline Echocardiographic Measurements Reprise REPRISE II – First 60 Patients

Parameter [*]	Patients
Aortic valve area (cm ²)	0.6 ± 0.2 (52)
Mean aortic gradient (mmHg)	47.5 ± 17.2 (57)
Peak aortic gradient (mmHg)	78.0 ± 27.5 (57)
LVEF (%)	54.2 ± 8.5 (35)
Mitral regurgitation (mod/severe)	16.7% (10)
Aortic regurgitation (mod/severe)	18.3% (11)

* All data based on independent assessment from Core Laboratory

Primary Device Performance Endpoint REPRISE II – First 60 Patients

* Value of 11.3 with a 99.2%[‡] UCB of 13.1 is significantly less than the performance goal (P<0.001)

[‡] Alpha-level adjustment for interim analysis
[†] Based on an expected mean of ≤15 mmHg (literature review) plus a test margin of 3 mmHg

Mean Aortic Gradient & EOA REPRISE II – First 60 Patients

Paravalvular Aortic Regurgitation-30 Days Reprise REPRISE II Comparison with Edwards Valves

Valve Performance/Success	Reprise
REPRISE II (First 60 Patients) - Procedur	e/Discharge
Device Performance – VARC 2	
Access, delivery, deployment, system retrieval	100.0% (60/60)
Valve repositioning, if attempted (n=16)	100.0% (16/16)
Valve retrieval, if attempted (n=4)	100.0% (4/4)
Device Success – VARC 2	
Absence of procedural mortality	98.3% (59/60)
Correct positioning of one valve in proper location	100.0% (60/60)
Intended performance (based on discharge echo)	
Mean aortic valve gradient <20 mmHg	94.6% (53/56)
Peak velocity <3 m/s	94.6% (53/56)
No moderate/severe prosthetic valve regurgitation	96.4% (54/56)
Indexed EOA >0.85 cm ² /m ² (>0.7 for BMI \geq 30)	60.5% (26/43)

Indexed Effective Orifice Area Post Implant Reprise REPRISE II Comparison with PARTNER Cohort A

Valve Malpositioning/Other Complications Reprise REPRISE II – First 60 Patients

Parameter	Patients
Aortic valve malpositioning	0.0% (0)
Valve migration	0.0% (0)
Valve embolization	0.0% (0)
Ectopic valve deployment	0.0% (0)
TAV-in-TAV deployment	0.0% (0)
Aortic valve endocarditis	0.0% (0)
Aortic valve thrombosis	0.0% (0)

Safety: Death & Stroke at 30 Days REPRISE II – First 60 Patients

Event	Patients
All-cause mortality (primary safety endpoint)*	1.7% (1)
Cardiovascular mortality	1.7% (1)
All stroke*	8.6% (5)
Disabling stroke	3.4% (2)
Non-disabling stroke	5.2% (3)

* Component of VARC-2 safety composite; all strokes were ischaemic

VARC Safety Composite & Other Endpoints *Reprise REPRISE II – First 60 Patients at 30 Days*

Pacemaker Implantation REPRISE II – First 60 Patients

Variable	Patients
Newly implanted pacemaker	29.3% (17/58)
Baseline PR prolongation	41.2% (7/17)
Baseline RBBB	23.5% (4/17)
Baseline LBBB	0.0% (0/17)
New conduction disturbance post valvuloplasty	58.8% (10/17)
Paced rhythm at 30 days	64.7% (11/17)
Indication	Patients
3 rd degree AV block	15
1 st degree AV block, RBBB, LAFB	1
Atrial fibrillation with slow ventricular rate	1

NYHA Class Changes Over Time REPRISE II – First 60 Patients

Summary & Conclusions REPRISE II – First 60 Patients

- Successful valve implantation in all 60 patients
- Primary device performance endpoint met
- Low mortality rate at 30 days (1.7%)
- Valve repositioning/retrieval was performed as needed
- No embolization, ectopic valve deployment, or TAV-in-TAV
- Negligible aortic regurgitation
- Clinical event rates consistent with those reported for other valves
- One of the first studies to report outcomes based on VARC-2 metrics

Results suggest the Lotus Valve, a differentiated, 2nd generation TAVI device, may be a valuable addition to the armamentarium for treatment of severe aortic stenosis