

Pivotal Trial to Evaluate the Safety and Efficacy of the Diamondback 360° Orbital Atherectomy System in Treating *De Novo*, Severely Calcified Coronary Lesions (ORBIT II)

Jeff Chambers, MD

Director of Research
Cardiac Catheterization Lab Director
Metropolitan Heart and Vascular Institute
Allina Mercy Hospital, Minneapolis, MN, USA

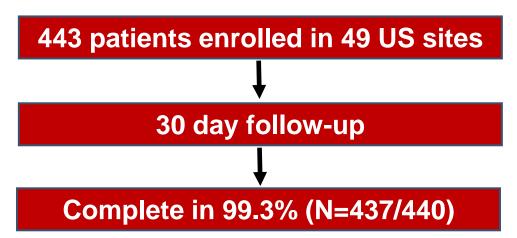
Potential conflicts of interest

Speaker's name: Jeff Chambers, M.D.

☑ I have the following potential conflicts of interest to report:

Consultant: Cardiovascular Systems Inc., MN, USA

CEC: Boston Scientific



ORBIT II Study Design

- To evaluate safety and efficacy of coronary OAS to prepare de novo, severely calcified coronary lesions for stent placement
 - Prospective, multi-center trial
 - Single arm FDA recommendation as there are no FDA-approved percutaneous treatments for patients with severely calcified lesions

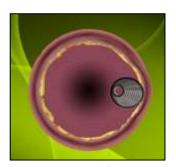
Primary Safety Endpoint: 30-Day MACE

MI (CK-MB >3x ULN), TVR, cardiac death

Primary Efficacy Endpoint: Procedural Success

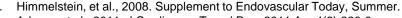
 Success in facilitating stent delivery with a final residual stenosis of <50% (as determined by Angiographic Core Lab) and without in-hospital MACE

Unique Mechanism of Action



Differential Sanding

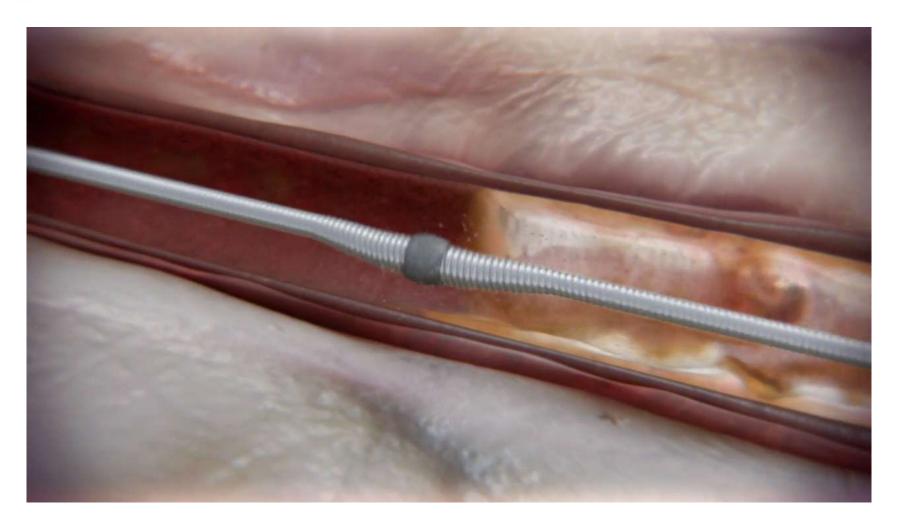
Crown will only sand the hard components of plaque



Soft components (plaque/tissue) flex away from crown

Differential Orbital Sanding

- Orbital mechanism¹:
 - Increased speed = Increased centrifugal force
 - Greater centrifugal force = Larger orbital diameter
- One crown treats different vessel diameters based on speed¹
- Continuous flow of blood and saline
 - Potentially minimizes thermal injury^{1,2}
 - Potentially decreases no-reflow³



^{2.} Adams, et al., 2011. J Cardiovasc Transl Res. 2011 Apr;4(2):220-9.

Orbit II data on file at CSI.

Coronary OAS Mechanism Of Action

Inclusion/Exclusion Criteria

Key Inclusion:

- The target lesion must have fluoroscopic or IVUS evidence of severe calcium:
 - Presence of radiopacities noted without cardiac motion prior to contrast injection involving both sides of the arterial wall with calcification length of at least 15 mm and extend partially into the target lesion
 - OR presence of ≥ 270° of calcium at one cross section via IVUS
- The target vessel reference diameter ≥ 2.5 mm and ≤ 4.0 mm and lesion must not exceed 40 mm in length

Key Exclusion:

- Diagnosed with chronic renal failure (CR >2.5 mg/dl) unless under hemodialysis
- Evidence of current LVEF ≤25%
- More than 1 lesion requiring intervention unless the lesions are staged
- In-stent treatment
- Target lesion is an ostial location, bifurcation or has a ≥ 1.5 mm side branch
- Target lesion has thrombus or dissection

PCR ORBIT II: Demographics & Characteristics

Demographics	N=443
Male	64.6%
Age (yrs)	71.4
History of diabetes mellitus	36.2%
History of CABG	14.7%
History of dislipidemia	91.9%
History of hypertension	91.6%
Smoker (current or previous)	66.1%
Vessel & Lesion Characteristics	N=440
Mean pre-procedure target lesion length	18.9 mm
Mean pre-procedure minimum lumen diameter	0.5 mm
Mean pre-procedure percent stenosis	84.4%
Subjects with severely calcified lesions	99.3%
Subjects with calcification determined by IVUS	8.0%

Procedural Results

Parameter	Result		
Subjects treated with Pre-OAS balloon dilations	1.8%		
Subjects treated with Post-OAS/Pre-Stent balloon dilations	41.1%		
Mean maximum inflation pressure	12.1 ± 0.3 atm		
Subjects with stent placed	98.2%		
Mean stents used per subject	1.3 ± 0.0		
Mean maximum deployment pressure	13.8 ± 0.2 atm		
Subjects treated with post stent balloon dilitation	51.6%		
Total mean interventional fluoroscopy time (includes diagnostic)	18.2 ± 0.6 mins		
Total mean interventional volume of contrast used (includes diagnostic)	173.9 ± 4.1 ml		
Core lab assessed final procedure mean minimum lumen diameter	2.9 ± 0.0 mm		
Core lab assessed final procedure mean stenosis	4.7 ± 0.7 %		

Angiographic Complications

Criteria	Prior to OAS	Post OAS	Post	Unknown	Overall N=443
Subjects with severe angiographic complications	THOI to GAS	Balloon/Stent	CHAIGHI	7.2%	
Dissection Type C- F	0.2%	2.3%	0.9%	0.0%	3.4%
Perforation	0.0%	0.9%	0.9%	0.0%	1.8%
Slow flow & Persistent no reflow	0.2%	0.2%	0.5%	0.0%	0.9%
Abrupt closure	0.2%	0.9%	0.2%	0.5%	1.8%

Factors analyzed for predictors of angiographic complications:

- Total OAD run time
- Average reference vessel diameter
- Percent stenosis
- OAD size used (OR for 0.1 unit increase)

- Number of balloon/stent inflations used (post OAD)
- Size of the balloon/stent used relative to the average
 reference vessel diameter (post OAD)- (OR for 0.1 unit increase)
- Length of calcium
- Highest stent deployment pressure used (post OAD)

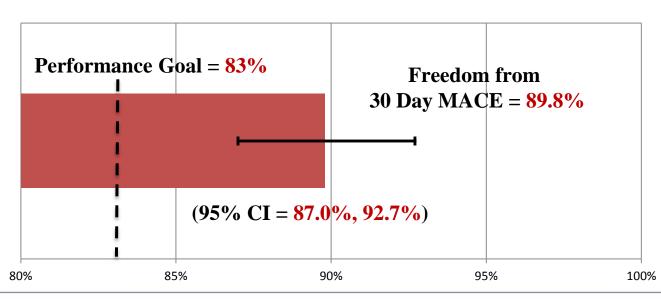
Univariable Analysis	OR [95% CI]	P-value
Lesion length (investigator assessed)	1.04 [1.00, 1.08]	0.0298
Highest deployment pressure during stent procedure	1.16 [0.99, 1.35]	0.0710
Length of calcium	1.02 [1.00, 1.04]	0.0717

OR>1: Increase in the odds of angiographic complication with an increase of one unit in predictor.

ORBIT II: Primary Safety Endpoint

30 Day MACE Rate Components:

MI (CK-MB >3x ULN): 9.7%


Non Q-wave 8.8% Q-wave 0.9%

TVR/TLR: 1.4%

TVR 0.7%

TLR 0.7%

Cardiac death: 0.2%

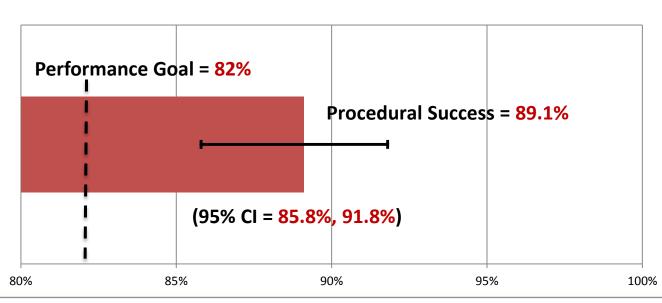
ORBIT II: Primary Efficacy Endpoint

Procedural Success Components:

Successful Stent delivered: 97.7%

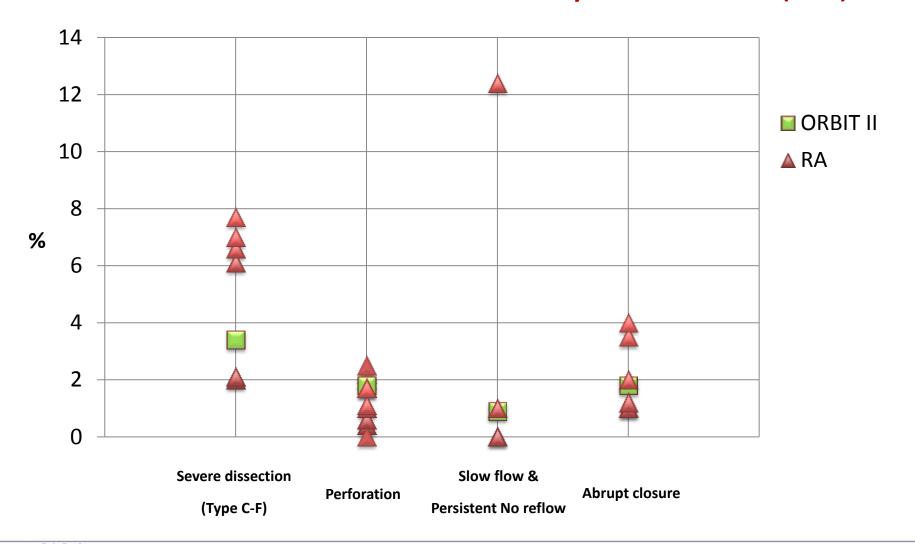
Less than 50% residual stenosis: 98.6%

In hospital MACE: 9.5%

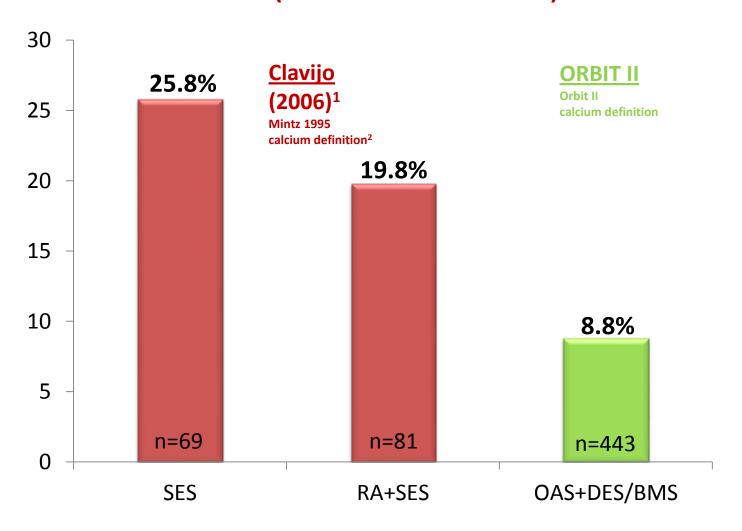

MI (CK-MB >3x ULN): 9.3%

Non Q-wave 8.8%

Q-wave 0.9%

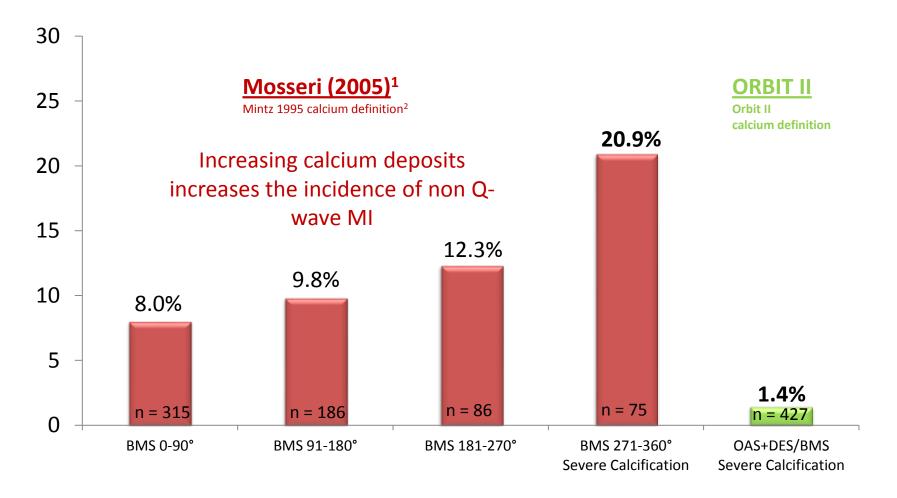

TVR: **0.7%**

Cardiac death: 0.2%


Angiographic Complications Compared to Rotational Atherectomy Literature (RA)¹

^{1.} RA References: Abdel-Wahab (2013), Albertal (2001), Bersin (1999), Brown (1997), Clavijo (2006), Furuichi (2009), Garcia de Lara (2010), Henneke (1999), Levin (1998), Mauri (2003), Rathore(2010), Reisman (1997), Tsubokawa (2003). Note: some references did not report all complications listed on table.

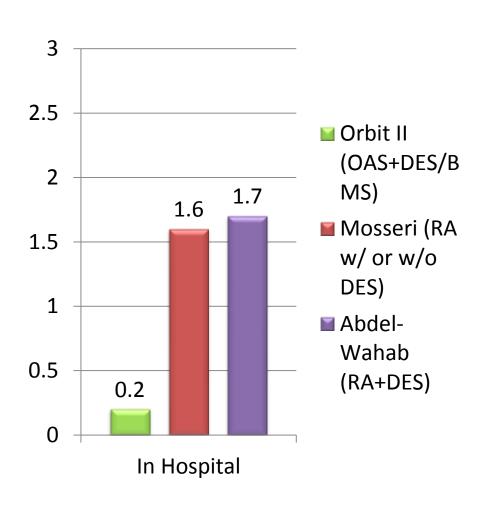
Non-Q-Wave MI in Severely Calcified Lesions (CK-MB>3X ULN)

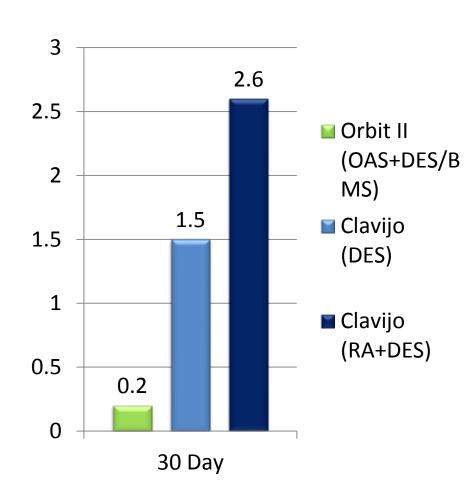


^{1.} Clavijo, et al. Catheterization and Cardiovascular Interventions. 2006. 68:873–878

^{2.} Mintz G, et al. Patterns of Calcification in Coronary Artery Disease. Circulation. 1995;91(7):1959-1965.

Non-Q-Wave MI in Severely Calcified Lesions (CK-MB>20% of total CK)

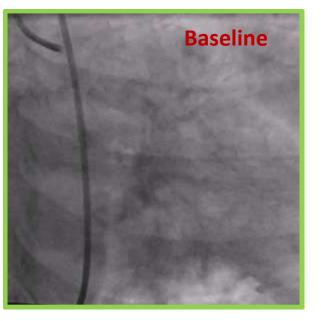



^{1.} Mosseri, et al. Cardiovascular Revascularization Medicine. 2005. 6:147-153.

Mintz G, et al. Patterns of Calcification in Coronary Artery Disease. Circulation. 1995;91(7):1959-1965.

Death Rates in Severely Calcified Lesions

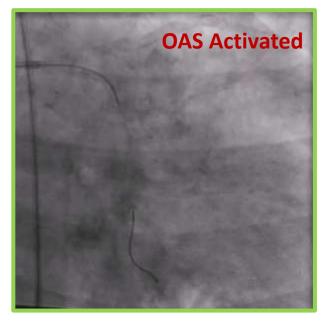
Clavijo, et al. Catheterization and Cardiovascular Interventions. 2006. 68:873–878
 Mosseri, et al. Cardiovascular Revascularization Medicine. 2005. 6:147-153.
 Abdel-Wahab, et al. JACC Cardiovasc Interv. 2013 Jan;6(1):10-9..

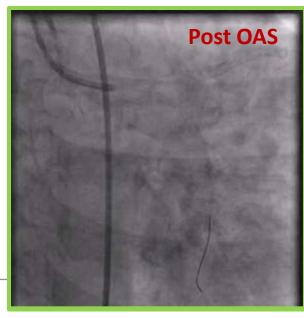


ORBIT II Case Study

Female, 70 years old

History of DM, smoker, dyslipidemia, HTN, EF 50%, Positive stress test


LCX Lesion length 24 mm



1.25 mm Crown With Electric OAD

Low Speed, 15 Seconds

High Speed, 15 Seconds

Caution – Investigational Device.
Limited by Federal (or United
States) law to investigational use
Not CE-marked. Data on file at CSI.

Conclusion

- ORBIT II was unique in enrolling only patients with severely calcified coronary arteries
- The ORBIT II trial met the primary safety and efficacy endpoints by a significant margin
- The improvement in clinical outcomes might be attributed to the unique mechanism of action of OAS
- OAS is a unique technology that appears to address an unmet need for this difficult to treat patient population