

Final 6-Month Results of the DIRECT (Direct-on-a-Wire Implantation of Rapamycin-Eluting Stent with Bioabsorbable Carrier Technology) First-In-Human Study

Mark Webster, MBChB

Auckland City Hospital Auckland, New Zealand

Potential Conflict(s) of Interest

Speaker's name: Mark Webster

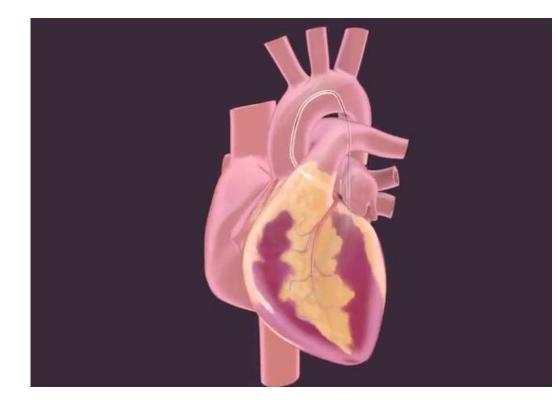
I have the following potential conflicts of interest to report:

X Research contract Svelte Medical Systems

Consulting
Employment in industry
Stockholder of a healthcare company
Owner of a healthcare company
Other(s)

Svelte IDS Balloon Technology Designed for Direct Stenting

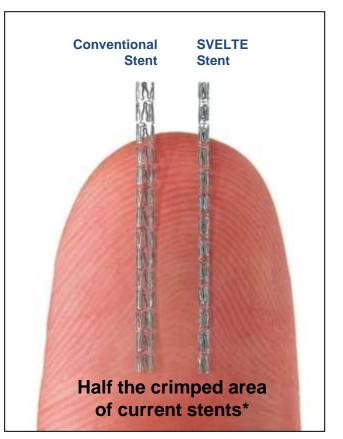
Elastic Balloon Control Bands (BCBs)


located on the proximal and distal balloon shoulders are designed to

- · Provide a smooth leading edge during delivery
- Focus pressure under stent for controlled deployment
- Minimize longitudinal balloon growth and contact with vessel wall

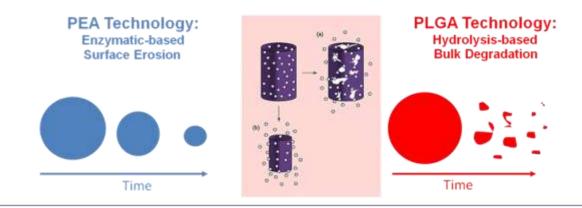
Lower Compliance Balloon Material

allows higher pressure inflations in order to optimize luminal gain


- Flatter compliance curve: ¼ size above RBP, high MBP (26 ATM); more consistent with NC than SDS balloon
- Nominal 10-12 ATM; RBP 18 ATM
- Designed for multiple inflations

Svelte DES Platform Overview

- Thinner-strut (81µ) L 605 CoCr stent
 - Same as Xience
- Hybrid design to maximize flexibility and radial strength, provide uniform drug elution
- Low profile optimizes the radial approach
- Study sizes
 2.5, 3.0 & 3.5 mm diameters, 18 & 23 mm lengths


* Profile defined as the crimped stent cross-sectional area.

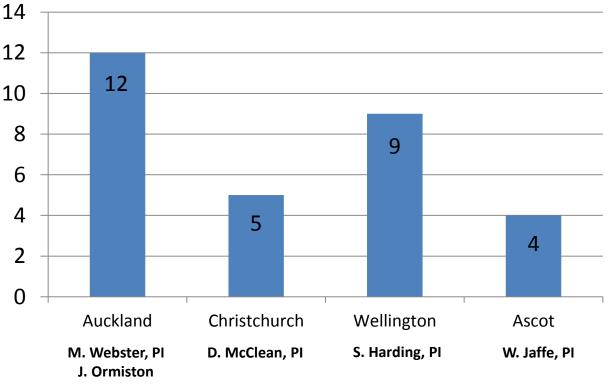
Svelte DES Bioabsorbable Drug Carrier

Amino acid-based coating

- Occurs naturally in the human body
- Non-thrombogenic, non-inflammatory, high mechanical integrity
- Fully biodegradable via enzymatic surface erosion with no pH change or activation of the complement cycle
- Mixed with sirolimus, applied to stent in single application
 - Coating thickness ~ 6 µm
 - Drug loading ~ 220 μg/cm² (3.0 x 18mm drug dose: ~130 μg)
 - Elution profile, tissue levels similar to Cypher, Xience

DIRECT First-In-Human Study

- Feasibility study evaluating the safety and performance of the Svelte DES Integrated Delivery System
 - Prospective, non-randomized clinical trial
 - 30 patients at 4 New Zealand centers
 - Clinical, angiographic, IVUS and OCT follow-up at 6 months
 - Primary safety endpoint: angiographic TVF
 - Primary efficacy endpoint: angiographic in-stent late lumen loss
 - Additional clinical follow-up at 1 and 6 mos.; annually up to 5 yrs.
 - Safety continuously monitored by independent DSMB
 - QCA, IVUS, OCT data reviewed by independent core lab (Cardialysis)


DIRECT Study Main Eligibility Criteria

- Clinical evidence of ischemic heart disease, stable or unstable angina, silent ischemia, and/or positive functional study
- Single target lesion, or two lesions (target and non-target) located in separate coronary arteries (non-target must be successfully treated first)
- RVD \geq 2.5 mm and \leq 3.5 mm
 - No stent deployment in target vessel within prior 6-months
- Target lesion \leq 20 mm with stenosis \geq 50% and < 100%
 - Treatment with device other than PTCA prior to stent placement not permitted
 - Ostial lesions (within 5mm of vessel origin) excluded
- MI within 72-hours of the index procedure excluded, with the following exceptions:
 - Patients with STEMI and PCI to culprit lesion may be included if a suitable lesion in another vessel exists patient is clinically and hemodynamically stable for 72-hours
 - Patients with non-STEMI may be included if troponin normal 24-hours pre-procedure

DIRECT Study Enrollment

Enrollment by Site

Enrollment completed May 2012

DIRECT Study Baseline Characteristics

Baseline Patient / Lesion Characteristics	Patients (n=30)
Age (years ± SD)	61 <u>+</u> 11
Male	24/30 (80%)
Diabetes	5/30 (17%)
Hypertension	18/30 (60%)
Hyperlipidemia	22/30 (73%)
Prior MI	17/30 (57%)
Prior PCI / CABG	8/30 (27%)
Target Vessel	
LAD	14/30 (47%)
LCX	8/30 (27%)
RCA	8/30 (27%)
Lesion Type, ACC/AHA	
A	2/30 (7%)
B1	13/30 (43%)
B2/C	15/30 (50%)
Reference Vessel Diameter (mm + SD)	2.69 ± 0.48
Lesion Length (mm <u>+</u> SD)	11.72 <u>+</u> 3.99

Direct Study Procedural, 6-Month Clinical Outcomes

Procedural Outcomes	Patients (n=30)
Device Success	29/30 (97%)*
Procedure Success	30/30 (100%)
6-Month Clinical Outcomes	Patients (n=29)
Cardiac Death	0/29 (0%)
Myocardial Infarction	0/29 (0%)
TLR, Clinically-Driven	0/29 (0%)
TVR (non-TLR) Clinically-Driven	0/29 (0%)
TLR, Angiographically-Driven	1/29 (3.4%)
TVR, non-TLR, Angiographically-Driven	1/29 (3.4%)
TVF	2/29 (6.9%)
Total MACE	2/29 (6.9%)
Stent Thrombosis	0/29 (0%)

Clinical outcomes unchanged through 12 Months

* All investigators were first-time operators with the IDS. Clinical data per ARC definitions.

Direct Study 6-Month Quantitative Coronary Angiography

Post-Procedure, 6-Month QCA	Patients (n=29)
RVD Pre-Procedure	2.69 <u>+</u> 0.48
Post-Procedure	
RVD (mm <u>+</u> SD)	2.76 <u>+</u> 0.45
In-Stent MLD (mm <u>+</u> SD)	2.47 <u>+</u> 0.46
In-Segment* MLD (mm <u>+</u> SD)	2.20 <u>+</u> 0.45
In-Stent % DS (% <u>+</u> SD)	10.9 <u>+</u> 6.37
In-Segment* % DS (% <u>+</u> SD)	18.5 <u>+</u> 7.28
6-Month Follow-Up	
RVD (mm <u>+</u> SD)	2.70 <u>±</u> 0.46
In-Stent MLD (mm <u>+</u> SD)	2.24 <u>+</u> 0.53
In-Segment* MLD (mm <u>+</u> SD)	2.05 <u>+</u> 0.50
In-Stent % DS (% <u>+</u> SD)	17.6 <u>+</u> 9.61
In-Segment [*] % DS (% <u>+</u> SD)	23.0 <u>+</u> 10.7
Late Loss (in-stent)	0.22 <u>+</u> 0.27 mm
Late Loss (in-segment*)	0.14 <u>+</u> 0.27 mm
Binary Restenosis (in-stent), n (%)	1 (3.4%)
Binary Restenosis (in-segment*), n (%)	1 (3.4%)

Independently reviewed core lab data (Cardialysis)

* In-segment defined as +5 mm proximal, distal to stent

Direct Study 6-Month IVUS

Post-Procedure, 6-Month IVUS	Patients N=25 post-procedure n=28 at 6-Months
Vessel Volume (mm ³ <u>+</u> SD)	
Post-Procedure	292.3 <u>+</u> 104.1
6-Months	288.4 <u>+</u> 92.9
Stent Volume (mm ³ <u>+</u> SD)	
Post-Procedure	148.6 <u>+</u> 48.2
6-Months	141.3 <u>+</u> 45.6
Luminal Volume (mm ³ <u>+</u> SD)	
Post-Procedure	148.1 <u>+</u> 47.6
6-Months	138.4 <u>+</u> 46.8
6-Month In-Stent Neointimal Volume (mm ³ + SD)	3.28 <u>+</u> 4.39
6-Month In-Stent Volume Obstruction (% <u>+</u> SD)	2.70 <u>+</u> 4.54

Direct Study 6-Month OCT

Post-Procedure, 6-Month OCT	Patients N=14 post-procedure n=15 at 6-Months
Stent Volume (mm ³ <u>+</u> SD)	
Post-Procedure	148.9 <u>+</u> 36.0
6-Months	150.2 <u>+</u> 35.4
Luminal Volume (mm ³ <u>+</u> SD)	
Post-Procedure	142.8 <u>+</u> 36.5
6-Months	132.5 <u>+</u> 38.0
Incomplete Stent Apposition (% <u>+</u> SD)	
Post-Procedure	9.16 <u>+</u> 7.18
6-Months	0.44 <u>+</u> 0.99
6-Month Covered Struts (% <u>+</u> SD)	97.9 <u>+</u> 3.58
6-Month Mean Strut Coverage (mm ³ <u>+</u> SD)	0.12 <u>+</u> 0.06

6-Month

DIRECT Study Outcomes

		Svelte DES FIM (DIRECT Study)	Xience DES FIM (SPIRIT FIRST Study)
Follow-Up	Reference Vessel Diameter	2.69 mm	2.61 mm
	Lesion Length	11.7 mm	10.1 mm
	Diabetics	17%	11%
	Clinically-Driven TLR	0%	3.8%
	Clinically-Driven TVF	0%	7.7%
	MACE*	0%	7.7%
	Neointimal Volume	3 mm ³	9 mm ³
	In-Stent Volume Obstruction	3%	7%
	In-Stent Late Loss	0.22 mm	0.12 mm
	Diameter Stenosis	18%	17%

DIRECT study outcomes in-line with current-generation DES despite more challenging patient population and first-time operators

* MACE as defined for both studies as death, MI or clinically-driven TLR.

Next Steps: DIRECT II RCT

- Non-inferiority evaluation of the safety and performance of the Svelte DES Integrated Delivery System (IDS)
 - Prospective, active-control, randomized, multi-center clinical trial
 - 159 subjects (2:1 randomization Svelte IDS : Resolute Integrity[™])
 - Clinical, angiographic follow-up at 6-months
 - Primary safety endpoint: angiographic TVF
 - Primary efficacy endpoint: angiographic in-stent late lumen loss
 - Additional clinical follow-up at 1 and 6-months; annually up to 5-years
 - OCT sub-study with follow-up at 6-months (4 clinical sites, n=30)
 - Independent DSMB, core lab review
 - PI Europe: Stefan Verheye, MD, PhD
 - PI Brazil: Alexandre Abizaid, MD, PhD
 - First patient Enrolled Q1 2013

PCR 2013

Conclusions

- Svelte DES with Integrated Delivery System (IDS) is an attractive and novel approach to direct stenting PCI
 - Low profile, BCBs optimized for direct stenting, use with the radial approach
 - IDS offers potential for procedural time, cost savings
 - Bioabsorbable drug carrier mixed with sirolimus demonstrates excellent suppression of hyperplastic response
- DIRECT First-In-Human 6-month results impressive, with clinical results sustained through 12-months
 - No clinically-driven TLR, TVR
 - 2.7% in-stent volume obstruction
 - No stent thrombosis

DIRECT II RCT underway

- Non-inferiority vs conventional DES
- 6-month outcomes expected Q1 2014