The Final Results with Primary End Point Analyses

<u>RANDOMIZED EVALUATION OF RECURRENT STROKE</u> COMPARING PFO CLOSURE TO ESTABLISHED CURRENT STANDARD OF CARE TREATMENT

JOHN D. CARROLL, MD, JEFFREY L. SAVER, MD, DAVID E. THALER, MD, PHD, RICHARD W. SMALLING, MD, PHD, SCOTT BERRY, PHD, LEE A. MACDONALD, MD, DAVID S. MARKS, MD, MBA, DAVID L. TIRSCHWELL, MD FOR THE RESPECT INVESTIGATORS

Disclosure Statement of Financial Interest

 Within the past 12 months, John Carroll and the University of Colorado (his employer) have had a financial interest/arrangement or affiliation with the organization listed below:

Affiliation/Financial Relationship	Company
Research Support to Perform Clinical Trials (RESPECT and ACP) ¹	AGA Medical/ St. Jude Medical
Consulting Fees for Steering Committee Work with RESPECT ¹	AGA Medical/ St. Jude Medical

Background: Cryptogenic Stroke and PFO

- Cryptogenic stroke remains a major challenge
 - PFO-related strokes, i.e. due to paradoxical embolism, have been strongly implicated as a possible cause
 - Patients age 20-54 are now a larger percentage of all stroke patients and among first ever strokes in the younger population there is growth in ischemic strokes¹
 - Cost of stroke is significant, with over \$94B^{2,3} spent each year in the US and EU alone – cost implications with young patients are immense, based on the loss of productivity and long-term care
- The results of PFO closure trials have included positive observational studies and one negative randomized trial
- The RESPECT trial was designed with a well-defined stroke population, a statistical design appropriate for expected low recurrent event rates, and used a device with an excellent safety record

3. Allender, S, Scarborough, P, Peto, V, et al European cardiovascular disease statistics 2008

^{1.} Kissela, BM, Khoury, JC, Alwell, K, et al. Age at stroke Temporal trends in stroke incidence in a large, biracial population. *Neurology* 2012;79:1781-1787

^{2.} Roger, V, Go, A, Lloyd-Jones, D, et. Al. Heart Disease and Stroke Statistics – 2012 Update: A Report from the American Heart Association. Circulation. 2012; 125:e2-e220

Pathophysiology of PFO and Paradoxical Embolism

Normal appearing atrial septum

Agitated saline study demonstrating right to left shunting through the PFO

Blood clot passing through the PFO becoming a paradoxical embolism

Trial Design

Design	 Multicenter: 69 Sites (62 US, 7 Canada) Prospective, 1:1 Randomized stratified by site and atrial septal aneurysm Device Group (Test): Closure with the AMPLATZER™ PFO Occluder plus medical therapy Medical Group (Control): 5 Medical Treatment Regimens:
Primary Analyses	Four protocol-specified analyses with raw count primary analysis
Trial Status	Trial was conducted under an Investigational Device Exemption (IDE)
Sponsor	St. Jude Medical, St. Paul, MN *Study initiated under AGA Medical, Plymouth, MN

Study Governance and Organization

Executive Steering Committee	John D. Carroll, MD, University of Colorado/University of Colorado Hospital, Department of Medicine (Cardiology) Jeffrey L. Saver, MD, University of California, Los Angeles, Department of Neurology Richard W. Smalling, MD, PhD, University of Texas/Memorial Hermann Heart and Vascular Institute, Division of Cardiology David E. Thaler, MD, PhD, Tufts University/ Tufts Medical Center, Department of Neurology
Independent Review	 Independent Clinical Events Committee (CEC) Independent Data Safety and Monitoring Board (DSMB) Independent Neurological Executive Committee Core Laboratories: Hematology (Quintiles) Echocardiography (CVR Consulting, PC)
Statistical Oversight	Independent Biostatistician: Berry Consultants

AMPLATZER PFO Occluder

AMPLATZER PFO Occluder*

- Percutaneous, transcatheter device
- Self-expanding, double-disc design
- Nitinol wire mesh with polyester fabric/thread
- Radiopaque marker bands
- Sizes: 18, 25, 35 mm
- Recapturable and repositionable

Inclusion/Exclusion Criteria

Inclusion Criteria:

- Patients (ages 18 to 60) with PFO who have had a cryptogenic stroke within 270 days
 - <u>Stroke defined</u> as acute focal neurological deficit, presumed to be due to focal ischemia, and either symptoms persisting 1) ≥ 24 hours, or 2) < 24 hours with MR or CT confirmed new, neuroanatomically relevant, cerebral infarct
 - <u>PFO defined</u> as TEE visualization of micro-bubbles in the left atrium within 3 cardiac cycles of their appearance in the right atrium at rest and/or during Valsalva release

Key Exclusion Criteria:

- Cerebral, cardiovascular, and systemic conditions that suggest other mechanisms for stroke. Examples:
 - Carotid disease, atrial fibrillation, cardiomyopathy, etc
 - Arterial hypercoagulable states
- Contraindications:
 - To aspirin or clopidogrel

- Uncontrolled diabetes mellitus or hypertension
- Other sources of right to left shunt
- Anatomical to device placement
- Any other reason to expect limited life expectancy, inability to attend follow-up visits, or inability to provide informed consent

Primary and Secondary Endpoints

Primary Endpoints

- Recurrence of a nonfatal ischemic stroke or
- Fatal ischemic stroke or
- Early post-randomization death defined as all-cause mortality
 - Device group within 30 days after implant or 45 days after randomization, whichever occurs latest
 - Medical group within 45 days after randomization

Secondary Endpoints

- Complete closure of the defect demonstrated by transesophageal echocardiography (TEE) and bubble study at the 6-month follow-up (Device Group)
- Absence of recurrent symptomatic cryptogenic nonfatal stroke or cardiovascular death
- Absence of transient ischemic attack (TIA)

Power Analysis and Event Driven Design

- Estimated rate of primary efficacy events at 2 years was 4.3% in the medical group and 1.05% in the device group
- An event driven trial design was employed since event rates were estimated to be low
 - Decision rules for trial stopping & power were based on event raw counts and assumed equal follow-up in both study groups
 - Enrollment was stopped December 29, 2011 when the decision rule of 25 primary endpoint events was reached which led to this presentation of results

Primary Endpoint Analyses Population

The 25 adjudicated endpoint events

- <u>All</u> primary endpoints were recurrent ischemic strokes. No study related deaths
- Analytic data set: observational period from the beginning of the trial to the date when the 25th primary endpoint event was adjudicated

RESPECT Enrollment and Endpoint Event by Year

Trial Results

Subject Distribution

Baseline Characteristics

	Device Group ¹ (N=499)	Medical Group ¹ (N=481)	P-value ²
Age (years) ³	45.7 (9.7)	46.2 (10.0)	0.491
Gender male (%)	53.7	55.7	0.564
Days from qualifying stroke to randomization	130 (70)	130 (69)	0.891
Atrial septal aneurysm (%)	36.1	35.1	0.790
Maximal baseline shunt Grade II - III (%) ^{3,4}	77.9	74.1	0.176
Qualifying Stroke Size			
Smaller infarct ≤ 1.5 cm	50.6	51.8	0.714
Larger infarct > 1.5 cm	r infarct > 1.5 cm 49.4 48.2		0.714

Right to left shunt grading scale (at rest or post-Valsalva)				
Grade 0	No bubbles	Grade II	10 - 20 bubbles	
Grade I	1 - 9 bubbles	Grade III	≥ 20 bubbles	

1. Statistics are represented as either mean (standard deviation) or percentages

2. Based on a 2-sample t-test (age), Wilcoxon-Mann-Whitney test (days from stroke to date randomized), and Fisher's Exact test (sex)

3. Numbers vary by site; Age N=968; Shunt N=969

Baseline Medical Characteristics No differences between the two groups

Event	Device Group N=499 n (%)	Medical Group N=481 n (%)	P-value ²
Diabetes mellitus	33 (6.6%)	40 (8.3%)	0.332
Systemic hypertension	158 (31.7%)	150 (31.2%)	0.891
Current smoker	75 (15%)	55 (11.4%)	0.109
Hypercholesterolemia	194 (38.9%)	193 (40.1%)	0.696
Coronary artery disease (CAD)	19 (3.8%)	9 (1.9%)	0.084
Peripheral vascular disease (PVD)	5 (1%)	1 (0.2%)	0.218
Previous transient ischemic attack (TIA)	58 (11.6%)	61 (12.7%)	0.626
Previous stroke ¹	53 (10.6%)	51 (10.6%)	1
History of migraine	195 (39.1%)	185 (38.5%)	0.844
History of deep vein thrombosis (DVT)	20 (4%)	15 (3.1%)	0.494

1. For Device Group N=498

2. P-value calculated using Fisher's Exact test

Serious Adverse Events Adjudicated as Related to Procedure, Device, or Study

16

Event	Device Group N=499 n (%)	Medical Group N=481 n (%)	P-value ⁷
Thrombus on device	0 (0%)	N/A	N/A
Device embolization	0 (0%)	N/A	N/A
Atrial fibrillation ¹	3 (0.6%)	3 (0.6%)	1
Transient ischemic attack (TIA)	3 (0.6%)	3 (0.6%)	1
Major bleeding	8 (1.6%)	9 (1.9%)	0.810
Pericardial tamponade (procedure related) ²	2 (0.4%)	N/A	N/A
Major vascular complications	4 (0.8%)	0 (0%)	0.124
Pulmonary embolism ³	1 (0.2%)	0 (0%)	1
Cardiac thrombus ⁴	2 (0.4%)	0 (0%)	0.500
Ischemic stroke⁵	2 (0.4%)	N/A	N/A
Death ⁶	0 (0%)	0 (0%)	N/A

1. For all AE's, atrial fibrillation occurred in 3.0% versus 1.5% in the device and medical groups respectively, p=0.13

2. Pericardial tamponade is a subset of major bleeds, and thus counted in the major bleed category as well

3. For all SAEs, pulmonary embolism occurred in 1.2% and 0.2% in device and medical groups, respectively, p=0.124

4. 1 case of right atrial thrombus resulted in abandonment of device implant procedure (no device received); 1 case of right atrial thrombus (located inferiorly) not attached to device detected in patient with DVT and PE 4 months after procedure

5. 1 ischemic stroke one week post implant; 1 five months post implant with finding of severe shunting related to previously undiagnosed sinus venosus defect, requiring surgical closure

6. For all SAEs, there were 3 device group deaths (0.6%) and 6 medical group deaths (1.2%) all of which were not study related, p= 0.334

7. P-values are calculated using Fisher's Exact test

Device Performance

Procedural Outcomes	n/N (%)
Technical success ¹	460 / 464 (99.1%)
Procedural success ²	444 / 462 (96.1%)
Effective closure ³	244 / 261 (93.5%)

Maximum Residual Shunting at Rest and Valsalva at 6 Months Grade 0: 72.7% Grade 1: 20.8% Grade 2-3: 6.5%

1. Defined as successful delivery and release of the device for subjects in whom the delivery system was introduced into the body

2. Defined as successful implantation with no reported in-hospital serious adverse events

3. Defined as complete obliteration or trivial residual shunting (Grade 0 or I at rest and Valsalva) at 6 months, adjudicated by echo core lab

Treatment Exposure and Follow-up

	Device Group (N=499)	Medical Group (N=481)	All Subjects N=980	P-value ¹
Mean (SD), years	2.8 (2.0)	2.5 (1.9)	2.6 (2.0)	
Median, years	2.2	2.1	2.1	
Range, years	0 - 8.1	0 - 8.1	0 - 8.1	
Total exposure, patient-years	1,375	1,184	2,559	0.009

- Total population with greater than 2,550 years of follow-up
- Device group had greater follow-up (fewer drop-outs)
 - 48 drop-outs in the device group versus 90 in the medical group

Primary End Point Analysis – Intent to Treat (ITT) Raw Count Cohort

Subjects N total (nD / nM)	Events N total (nD / nM)	Relative Risk (RR) [D vs M] ¹ RR (95% CI)	Risk Reduction (1 – RR)	P value ²
980 (499 / 481)	25 (9 / 16)	0.534 (0.234, 1.220)	46.6%	0.157

Abbreviations: D = Device group; M= Medical group

- <u>The primary analysis using the raw count of the ITT cohort was</u> <u>deemed invalid</u> because the exposure to the two treatment options was unequal due to a greater drop-out rate in the medical group
- The protocol specified that, if unequal drop-out occurred, then survival functions for the <u>time-to-endpoint event for each treatment</u> <u>group would be used</u> to provide an exposure-stratified comparison
 - Survival analysis methods would then be used at a two-sided 0.05 level using the log-rank statistic. Hazard ratios were calculated using a Cox proportional-hazards model

Primary Endpoint Analysis – ITT Cohort 50.8% risk reduction of stroke in favor of device

 3/9 device group patients did not have a device at time of endpoint stroke Primary Endpoint Analysis – Per Protocol Cohort 63.4% risk reduction of stroke in favor of device

 The Per Protocol (PP) cohort includes patients who adhered to the requirements of the study protocol Primary Endpoint Analysis – As Treated Cohort 72.7% risk reduction of stroke in favor of device

The As Treated (AT) cohort demonstrates the treatment effect by classifying subjects into treatment groups according to the treatment actually received, regardless of the randomization assignment

Totality of Evidence and NNT 46.6%-72.7% risk reduction of stroke in favor of device

Totality of Evidence

Analysis	Risk Reduction	P-Value ¹
Intent to Treat Raw Count	46.6%	0.157
Intent to Treat KM	50.8%	0.083
Per Protocol KM	63.4%	0.032
As Treated KM	72.7%	0.007

Number Needed to Treat (NNT)

	NNT ²	Device Group Event Rate ³	Medical Group Event Rate ³
1 Year	250	1.33%	1.73%
2 Year	70.4	1.60%	3.02%
5 Year	23.9	2.21%	6.40%

1. P-values: ITT Raw Count is calculated using Fisher's Exact test; all other P-values are calculated using log-rank test

2. The NNT is the average number of subjects that need to be treated with the AMPLATZER[™] PFO Occluder in order to prevent one stroke in the respective time intervals. The NNT is calculated as the reciprocal of the difference between the control arm and device arm event rates 23

3. Calculated using the Kaplan-Meier estimated event rates for each treatment group

Subpopulation Differential Treatment Effect

Subgroup	Device Group	Medical Group	Hazard Ratio and 95% CI		Pvalue (Log Rank)	Interaction Pvalue	
no. of patients/total number (%)							
Overall	9/499 (1.8%)	16/481 (3.3%)		0.492 (0.217, 1.114)	0.0825		
Age						0.5156	
- 18-45	4/230 (1.7%)	5/210 (2.4%)		0.698 (0.187, 2.601)	0.5901		
- 46-60	5/262 (1.9%)	11/266 (4.1%)	; ; + ; ;	0.405 (0.140, 1.165)	0.0828		
Sex						0.7312	
- Male	5/268 (1.9%)	10/268 (3.7%)		0.448 (0.153, 1.311)	0.1321		
- Female	4/231 (1.7%)	6/213 (2.8%)		0.571 (0.161, 2.024)	0.3789		
Shunt Size						0.0667	
- None, trace or moderate	7/247 (2.8%)	6/244 (2.5%)	⊢ ••	1.034 (0.347, 3.081)	0.9527		
- Substantial	2/247 (0.8%)	10/231 (4.3%)		0.178 (0.039, 0.813)	0.0119		
Atrial septal aneurysm						0.1016	
- Present	2/180 (1.1%)	9/169 (5.3%)		0.187 (0.040, 0.867)	0.0163		
- Absent	7/319 (2.2%)	7/312 (2.2%)		0.889 (0.312, 2.535)	0.8259		
Index infarct topography						0.3916	
- Superficial	5/280 (1.8%)	12/269 (4.5%)		0.366 (0.129, 1.038)	0.0487		
- Small Deep	2/57 (3.5%)	1/70 (1.4%)		1.762 (0.156, 19.93)	0.6429		
- Other	2/157 (1.3%)	3/139 (2.2%)		0.558 (0.093, 3.340)	0.5167		
Planned medical regimen						0.1966	
- Anticoagulant	4/132 (3.0%)	3/121 (2.5%)		1.141 (0.255, 5.098)	0.8628		
- Antiplatelet	5/367 (1.4%)	13/359 (3.6%)	H	0.336 (0.120, 0.944)	0.0299		
		0.	01 0.1 1 10 Favors Device Favors Medical			24	

Recurrent Cerebral Infarct Size¹ Methods pre-specified; analysis post-hoc

Event	Device Group n/N (%)	Medical Group n/N (%)	P-value ²	
Larger infarct >1.5cm	1/7 (14%)	9/13 (69%)	P-0.0572	
Smaller infarct ≤ 1.5cm	6/7 (86%)	4/13 (31%)	P=0.0573	

 This exploratory analysis of site-reported recurrent cerebral infarct size is provocative in suggesting that recurrent ischemic strokes in the medical versus device group are not only more frequent but also larger

^{1.} Recurrent infarct size reported on primary endpoint population

Limitations

RESPECT CLINICAL TRIAL

- Differential drop-out rate
 - Some medical group patients left study and underwent off-label closure
- ITT Results
 - Raw count analysis invalid due to differential treatment exposure
 - Borderline p-value for ITT-KM cohort
 - Even though 3/9 device patients with recurrent ischemic stroke <u>did not have</u> <u>device</u> in place when stroke occurred
 - PP and AT cohorts are relevant to assessing treatment
 - Totality of evidence must be considered
- Sub-group analysis with only 25 events is exploratory in nature
 - Clinically, the atrial septal aneurysm and shunt size findings are relevant and support mechanism of action
- RESPECT took over 8 years to complete
 - Yet, this produced longer term outcomes than any other study particularly important for young stroke patients who face a risk of recurrent stroke for decades
 - Benefit became especially prominent 2-5 years after device placement

Conclusion

- For carefully selected patients with history of cryptogenic stroke and PFO, the RESPECT Trial provides evidence of benefit in stroke risk reduction from closure with the AMPLATZER PFO Occluder over medical management alone
 - Primary analysis of ITT cohort was not statistically significant but trended towards superiority while secondary analyses suggested superiority
 - Stroke risk reduction was observed across the totality of analyses with rates ranging from 46.6% - 72.7%
- PFO closure with the AMPLATZER PFO Occluder exposes patients to a very low risk of device- or procedure-related complications
- Results of the RESPECT Trial have substantial import for the treatment of patients with a history of cryptogenic stroke and PFO
- Follow-up of patients is on-going and will continue to provide additional longer term information regarding benefits, risks, and differential treatment effects in sub-populations

Study Sites and Principal Investigators

Study Site	Principal Investigator		
Swedish Medical Center/ South Denver Cardiology/ Blue Sky Neurology	Lee MacDonald, MD		
Medical College of Wisconsin	David Scott Marks, MD MBA		
Tufts University/Tufts Medical Center	David Thaler, MD, PhD		
University of Washington	David Tirschwell, MD, MSc Steven Goldberg, MD		
University of Texas/Memorial Hermann Heart and Vascular Institute	Richard Smalling, MD PhD		
Duke University Medical Center	Larry Goldstein, MD		
OSF St. Francis Medical Center	David Wang, DO Douglas Schneider, MD		
University of Colorado Health Sciences Center	C. Alan Anderson, MD		
Medstar Washington Hospital Center	Lowell Satler, MD		
Ohio State University	Andrew Slivka, Jr., MD		
University of Wisconsin	Giorgio Gimelli, MD Matthew Wolff, MD		
St. Thomas Hospital	Robert Fallis, MD		
UCLA	Jeffrey Saver, MD		
Mercy Hospital of Buffalo DENT Neurologic Institute	Vernice Bates, MD Henry Meltser, MD		
Oregon Health and Science University	Helmi Lutsep, MD		
Moses Cone Memorial Hospital	Pramod Sethi, MD		
Stroke Prevention and Atherosclerosis Research Center	J. David Spence, MD		
The Pennsylvania State University and the Milton S Hershey Medical Center	Raymond Reichwein, MD		
University of Kentucky	L. Creed Pettigrew, MD		
Medical University of South Carolina	Aljoeson Walker, MD		
Washington University School of Medicine	Jin-Moo Lee, MD Abdullah Nassief, MD		
Permanente Medical Group	Jacob Mishell, MD Michel Accad, MD		
University of Rochester	Curtis Benesch, MD, MPH		
University of Kansas Medical Center Research Institute, Inc.	Peter Tadros, MD		

Study Site	Principal Investigator	
University of Alberta	Ashfaq Shuaib, MD Dylan Taylor, MD	
University of Nebraska	Pierre Fayad, MD	
Abbott Northwestern Hospital/ Noran Neurological Clinic	Anil Poulose, MD Richard Shronts, MD	
Ochsner Clinic Foundation	J. Stephen Jenkins, MD	
University of Michigan	Lewis Morgenstern, MD	
LeHigh Valley Hospital	J. Patrick Kleaveland, MD Bryan Kluck, DO	
Vancouver General Hospital	Philip Teal, MD, FCRP (C)	
The University of Texas Southwestern	Mark Johnson, MD Dion Graybeal, MD	
Ruan Neurology Clinical Research Center	Michael Jacoby, MD	
University of Iowa	Patricia Davis, MD	
Mayo Clinic	Bart Demaerschalk, MD	
Vanderbilt University Medical Center	Robert Piana, MD	
Providence Heart and Vascular	Todd Caulfield, MD	
Charleston Area Medical Center	Stephen Lewis, MD	
University Hospitals of Cleveland	Cathy Sila, MD. Eliahu Feen, MD Gerald Grossman, MD Dennis Landis, MD Jose Suarez, MD	
Akron Children's Hospital	DeRen Huang, MD Robert Lada, MD	
St. Vincent's Medical Center	Samer Garas, MD	
Sentara General Hospital	Deepak Talreja, MD	
University of Minnesota	Fareed Suri, MD Gareth J Parry, MD	
The Board of Trustees of the University of Alabama for University of Alabama at Birmingham	Andrei Alexandrov, MD	
Lancaster General Hospital	Venkatachalam Mangeshkumar, MD	
Summit Medical Center	John Chiu, MD Robert E. Gwynn, MD	
LAC-USC Medical Center	Anilkumar Mehra, MD	

or	Study Site	Principal Investigator
St. Ma	ary's Duluth Clinic	Kathleen Braddy, MD Wilson Ginete, MD
Montr	eal Heart Institute	Reda Ibrahim, MD Sylvain Lanthier, MD
North	western University	Mark Alberts, MD
South	ern Illinois University	Sushant Punjaram Kale, MD Zeng Yu Wang, MD, PhD Joni Clark, MD
Medic	al Center of the Rockies	John Bradley Oldemeyer, MD
Marsh	field Clinic	Milind Shah, MD
North	Central Heart Institute	J. Michael Bacharach, MD
Metho Medic	dist Hospital/Park al Center	Nicollet Jay Simonson, MD Carmelo Panetta, MD
Alban	y Medical Center	Gary Bernardini, MD, PhD
Interm	nountain Stroke Center	Nancy Futrell, MD
St. Fra Heart	ancis Hospital/Indiana Physicians	Saeed Shaikh, MD
Unive	rsity of Chicago	Atman Shah, MD Neeraj Jolly, MD
Advoc	ate Healthcare	Franco Campanella, MD
Univer of New	rsity of Medicine and Dentistry v Jersey	Marc Klapholz, MD
George	e Washington University	Jonathan Reiner, MD
St. Jos Cardio	seph's/MidAtlantic vascular Associates	Michael Drossner, MD
Sharp	Memorial Hospital	Raghava Gollapudi, MD
Royal	Columbian Hospital	Albert Chan, MD
Mayo	Clinic Rochester	Guy Reeder, MD Donald Hagler, MD
Lourd	es Medical Center	Manoj Khandelwal, MD
Toront	to General Hospital	Eric Horlick, MD
Unive	rsity of Calgary	Michael D Hill, MD

Trial Sites Top 5 enrollers noted

Patient Disposition: Randomization and Follow-Up

* Completed primary endpoint follow-up

** Discontinued prior to primary endpoint