Cost-Effectiveness of Transcatheter Aortic Valve Replacement with a Self-Expanding Prosthesis Compared with Surgical Aortic Valve Replacement in High Risk Patients

Results from the CoreValve US High Risk Study Matthew R. Reynolds, MD, MSc For the CoreValve US Clinical Investigators Harvard Clinical Research Institute Saint-Luke's Mid America Heart Institute

CoreValve US Clinical Trials Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- Medtronic, Edwards Lifesciences
- Medtronic
- None
- None
- None
- None
- None

All faculty disclosures are available on the CRF Events App and online at www.crf.org/tct

Background

- Previous studies have shown that TAVR provides substantial clinical benefits at acceptable incremental costs for patients with symptomatic, severe aortic stenosis who are unsuitable for surgical AVR
- There is less consensus about the cost-effectiveness of TAVR relative to SAVR for high-risk surgical candidates
- Recently, the CoreValve US Pivotal High Risk Trial demonstrated improved 12-month survival with TAVR using a self-expanding prosthesis compared with SAVR in high-risk aortic stenosis patients

Objectives

- Quantify "in-trial" survival, quality of life, quality-adjusted survival, resource use and costs for both TAVR and SAVR through 12 months
- Characterize incremental cost-effectiveness of TAVR vs. SAVR over a lifetime horizon

Methods: Overview

Analytic Perspective

• US healthcare system (2013 US dollars)

Analysis Population

- All patients from As Treated trial population (N=747)
 - Crossovers within this population analyzed according to their randomized grouping (ITT principle)

General Approach

- In-trial (12-month) analysis with patient-level lifetime projections of life expectancy, quality-adjusted life expectancy, and costs
- Primary effectiveness measure = quality adjusted life-years (QALYs); secondary measure = life years (LYs)
- Future costs and benefits discounted at 3%/year

Methods

- Costs through 12 months were calculated using a combination of resource-based accounting and hospital billing data. Observed costs from the 6-12 month interval were used to project future costs
 - CoreValve estimated commercial price = \$32,000
 - Cath lab overhead for IF-TAVR procedures; OR overhead for all other procedures
- EQ-5D utilities measured at baseline, 1, 6 and 12 months and used to estimate quality-adjust life expectancy

Methods: Survival Projections

- SAVR Group: Observed mortality (6-18 months) calibrated to age/gender matched mortality from US life tables. Life tables, with calibration factor, used to project patient-level survival beyond 12 months
- TAVR Group: Hazard ratio (TAVR vs. SAVR) for survival projections derived from 6-18 month landmark analysis of trial data
 - Observed hazard ratio = 0.94 (95% CI: 0.57 to 1.56)
 - For base case analysis, hazard ratio assumed = 1.0

Baseline Characteristics

Characteristic	TAVR N=390	SAVR N=357
Age, years	83.1 ± 7.1	83.2 ± 6.4
Men, %	53.1	52.4
STS Predicted Risk of Mortality, %	7.3 ± 3.0	7.5 ± 3.4
Logistic EuroSCORE, %	17.7 ± 13.1	18.6 ± 13.0
Prior MI	25.4	25.2
Prior coronary artery bypass surgery	29.5	31.1
Prior stroke	12.6	14.0
Home oxygen	12.9	11.5
Creatinine clearance <30 cc/min	12.0	11.7
Peripheral artery disease	41.1	41.7

P=NS for all comparisons

Index Procedure/Admission Resource Use

	TAVR	SAVR	Difference	Р
Resource Category	N=390	N=357	(95% CI)	Value
Procedure duration, min	61±35	221±85	-161 (-151 to -170)	<0.001
Room time, min	216±62	315±94	-99 (-87 to -110)	<0.001
Total hospital LOS*, days	8.1 (6)	12.5 (9)	-4.4 (-3.1 to -5.7)	<0.001
ICU	3.1 (2)	4.7 (3)	-1.6 (-0.9 to -2.3)	<0.001
Non-ICU	5.0 (4)	7.7 (5)	-2.8 (-1.8 to -3.8)	<0.001
Post procedure	6.7 (5)	11.5 (8)	-4.8 (-3.6 to -5.9)	<0.001
Total ventilator time, hr	14.2±64.1	36.2 ± 84.3	-22.0 (-11.1 to -32.8)	<0.001

*LOS data are shown as mean (median)

Index Admission: Costs

Discharge Destination

12-Month Follow-up Costs

CoreValve US Clinical Trials

In-Trial EQ-5D Scores

1 ----TAVR ---- SAVR 0.8 0.6 $\Delta = 0.112$ $\Delta = 0.009$ $\Delta = 0.004$ 0.4 P<0.001 P=0.89 P=0.27 0.2 0 2 3 7 10 11 1 5 6 8 12 0 4 9 Months

CoreValve US Clinical Trials

Projected Survival

TAVR vs. SAVR Cost per QALY gained, Lifetime

TAVR vs. SAVR Cost per LY gained, Lifetime

CoreValve US Clinical Trials Index Procedure/Admission Resource Use Access Site

Resource						
Category	lliofemoral			Non Iliofemoral		
	TAVR N=323	SAVR N=300	Difference	TAVR N=67	SAVR N=57	Difference
Procedure time, min	62 ± 34	220 ± 81	-158*	56±42	270 ± 102	-172*
Room time, min	210 ± 58	314 ± 90	-104*	251 ± 58	324 ± 113	-73*
Total LOS, day	7.6 (6)	12.6 (9)	-5.0*	10.4 (8)	11.9 (10)	-1.4
Ventilator time, hr	11 ± 41	37±88	-26.1*	31 ± 124	33±63	-2.3
D/C to Rehab, %	20.4	44.3	-23.9*	35.8	40.4	-4.5

LOS data are shown as mean (median); *P<0.05

TCT 2014

Iliofemoral Group Lifetime Cost Effectiveness

Non-iliofemoral Group Lifetime Cost Effectiveness

Impact of Reducing TAVR Admission Costs

Cost/QALY Gained --Cost/LY Gained

Summary of Findings

- In the CoreValve US Pivotal High Risk Trial, TAVR improved 1-month quality of life and 12-month survival relative to SAVR
- In projections, TAVR added ~0.24 life years and 0.20 QALYs per patient (with 3% discounting)
- Index admission costs were higher with TAVR by ~\$11,000 per patient, and lifetime costs were projected to be higher by ~\$13,700
- Projected lifetime ICERs were ~\$67,000 per QALY gained and \$57,000 per LY gained, and were slightly lower in the iliofemoral sub-group

Conclusions

- In this high risk population, TAVR provided meaningful clinical benefits relative to SAVR, with incremental costs considered acceptable from a US perspective
- Results were slightly more favorable for patients eligible for iliofemoral access and slightly less favorable, though still acceptable, for patients not eligible for iliofemoral access. The latter group was small and their results are uncertain
- With modest reductions in the cost of index TAVR admissions, the value of TAVR compared with SAVR in this patient population would become high

Sensitivity/sub-Group Analyses, Cost per QALY Gained

	Effectiveness			Lifetime Cost			
	TAVR	SAVR	Diff.	TAVR	SAVR	Diff.	ICER
0% discount	4.23	3.97	0.26	\$206,508	\$191,103	\$15,406	\$59,483
5% discount	3.33	3.15	0.18	\$178,834	\$165,898	\$12,936	\$71,867
Men	3.34	3.38	-0.04	\$177,313	\$171,238	\$6075	dominated
Women	3.92	3.53	0.39	\$199,355	\$179,482	\$19,873	\$50,311
HR = 0.94	3.74	3.43	0.28	\$191,477	\$174,583	\$16,894	\$54,851
No QOL Benefit	3.62	3.44	0.18	\$188,263	\$174,583	\$13,680	\$73,946
No Costs in Added Yrs	3.63	3.43	0.20	\$98,358	\$89,151	\$9207	\$45,132

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc. Published by Elsevier Inc.

PERFORMANCE MEASURES

ACC/AHA Statement on Cost/Value Methodology in Clinical Practice Guidelines and Performance Measures

A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force on Practice Guidelines

Cost Effectiveness in Cardiovascular Medicine

CoreValve US Clinical Trials