Five-Year Outcomes of Transcatheter Aortic Valve Replacement (TAVR) in "Inoperable" Patients With Severe Aortic Stenosis: The PARTNER Trial

Samir R. Kapadia, MD On behalf of The PARTNER Trial Investigators

TCT 2014 | September 13, 2014

All faculty disclosures are available on the CRF Events App and online at www.crf.org/tct

Background

- Transcatheter aortic valve replacement (TAVR) is the recommended treatment for "inoperable" patients with severe aortic stenosis (AS).
- Long term clinical benefit and valve performance in this population remain unknown.

The NEW ENGLAND JOURNAL of MEDICINE

Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Robert A. Guyton, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann, M.D., Pamela C. Douglas, M.D., John L. Petersen, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart Pocock, Ph.D., for the PARTNER Trial Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement for Inoperable Severe Aortic Stenosis

Raj R. Makkar, M.D., Gregory P. Fontana, M.D., Hasan Jilaihawi, M.D., Samir Kapadia, M.D., Augusto D. Pichard, M.D., Parnela S. Douglas, M.D., Vinod H. Thourani, M.D., Vasilis C. Babaliaros, M.D., John G. Webb, M.D., Howard C. Herrmann, M.D., Joseph E. Bavaria, M.D., Susheel Kodali, M.D., David L. Brown, M.D., Bruce Bowers, M.D., Todd M. Dewey, M.D., Lars G. Svensson, M.D., Ph.D., Murat Tuzcu, M.D., Jeffrey W. Moses, M.D., Matthew R. Williams, M.D., Robert J. Siegel, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Stuart Pocock, Ph.D., Craig R. Smith, M.D., and Martin B. Leon, M.D., for the PARTNER Trial Investigators*

Long-Term Outcomes of Inoperable Patients with Aortic Stenosis Randomized to Transcatheter Aortic Valve Replacement or Standard Therapy Samir R. Kapadia, E. Murat Tuzcu, Raj R. Makkar, Lars G. Svensson, Shikhar Agarwal, Susheel Kodali, Gregory P. Fontana, John G. Webb, Michael Mack, Vinod H. Thourani, Vasilis C. Babaliaros, Howard C. Hermann, Wilson Szeto, Augusto D. Pichard, Mathew R. Williams, William N. Anderson, Jodi J. Akin, D. Craig Miller, Craig R. Smith and Marin B. Leon

Circulation published online September 9, 2014; Circulation is published by the American Heart Association, 727 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

PARTNER Study Design

PAR

- Primary endpoint evaluated when all patients reached one year follow-up.
- After primary endpoint analysis reached, patients were allowed to cross-over to TAVR.

Key End-Points for 5 Year Analysis

- All-Cause Mortality
- Cardiac Mortality
- Re-hospitalization
- Stroke
- NYHA functional class
- Echo-derived valve areas, transvalvular gradients, and paravalvular leak.
- Mortality outcomes stratified by STS score, paravalvular leak and age.

Study Flow Inoperable Cohort

* \pm 2 months follow-up window

Patient Characteristics

Characteristic	TAVR N = 179	Standard Rx N = 179	p-value
Age – yr	83.1 ± 8.6	83.2 ± 8.3	0.95
Male sex (%)	45.8	46.9	0.92
STS Score	11.2 ± 5.8	12.1 ± 6.1	0.14
	7 8	6 1	0.68
III or IV (%)	92.2	93.9	0.68
CAD (%)	67.6	74.3	0.20
COPD			
Any (%)	41.3	52.5	0.04
O ₂ dependent (%)	21.2	25.7	0.38
Creatinine > 2 mg/dL (%)	5.6	9.6	0.23
Frailty (%)	18.1	28.0	0.09
Porcelain aorta (%)	19.0	11.2	0.05
Chest wall radiation (%)	8.9	8.4	1.00

All-Cause Mortality (ITT) Crossover Patients Censored at Crossover

PART

ER

* In an age and gender matched US population without comorbidities, the mortality at 5 years is 40.5%.

Median Survival

All-Cause Mortality (ITT) Landmark Analysis

TAVR (n = 179)

Cardiovascular Mortality (ITT) Crossover Patients Censored at Crossover

THE PARTNER TRIAL

Causes of Death

All-Cause Mortality Stratified by STS Score (ITT)

Cardiovascular Mortality Stratified by STS Score (ITT)

Repeat Hospitalization (ITT)

NYHA Class Over Time (ITT) Survivors

Competing Risks Analysis (ITT) Death and Stroke

Paravalvular Leak (AT)

Mortality by Paravalvular Leak

All-Cause Mortality

Cardiovascular Mortality

Months

Mean Gradient & Valve Area (AT)

Mean Gradient & Valve Area (AT) Restricted to Patients with 5 Year Data

Subgroup Analysis All-Cause Mortality

				Interaction
		Hazard Ratio	[95% CI]	p-value
Overall (N=358)		0.50	[0.39-0.65]	
Ago (95 (NI-196)		0.46	10 22 0 661	
Aye < 05 (N = 100)		0.48		0.40
Age ≥ 85 (N=1/2)		0.56	[0.39-0.79]	
$Male\left(N=166\right)$		0.46	[0.32-0.66]	0.34
Female (N=192)		0.55	[0.40-0.78]	
BMI ≤ 25 (N=170)		0.58	[0.41-0.84]	0.71
BMI > 25 (N=188)		0.44	[0.31-0.63]	
STS ≤ 11 (N=170)		0.52	[0.36-0.76]	0.65
STS > 11 (N=187)		0.53	[0.37-0.74]	0.00
EF ≤ 55 (N=173)		0.47	[0.33-0.67]	0 00
EF > 55 (N=171)		0.61	[0.42-0.88]	0.03
Pulmonary Hypertension				
No (N=136)		0.56	[0.37-0.85]	0.07
Yes (N=103)		0.51	[0.32-0.82]	0.07
Mod / Sev MR				
No (N=261)		0.58	[0.43-0.77]	0.00
Yes (N=77) —		0.30	[0.17-0.53]	0.03
Oxygen Dependent COPD				
No (N=270)		0.46	[0.35-0.62]	
Yes (N=88)		0.68	[0.42-1.10]	0.14
Prior CABG or PCI				
No (N=182)		0.55	[0.39-0.78]	
Yes (N=176)		0.46	[0.32-0.66]	0.27
	· · · · · · · · · · · · · · · · · · ·			
0.1	1.0			10.0

Clinical Observations

- Mortality benefit was similar in elderly (>85 yr) patients compared to those ≤85 years.
- Cardiovascular mortality and all-cause mortality benefit was seen even in patients with high STS score.
- Patients with O2 dependent COPD may have less mortality benefit.
- Beyond early procedural risk of stroke there was no persistent risk over 5-year follow up.
- Moderate and severe paravalvular leak is associated with higher cardiovascular mortality particularly in patients with less comorbidities.

Main Conclusions

- At 5 years follow-up benefits of TAVR were sustained as measured by:
 - All-Cause Mortality
 - Cardiovascular Mortality
 - Repeat Hospitalization
 - Functional Status
- Valve durability was demonstrated with no increase in transvalvular gradient or attrition of valve area.

Thank You to the Dedicated Study Teams at All PARTNER Investigational Sites

Back-Up Slides

Aortic Stenosis

By John Ross, Jr., M.D. and Eugene Braunwald, M.D.

THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for

sons. Ten of 12 patients with severe aortic stenosis (transvalvar pressure gradients $\equiv 50$ mm Hg, or effective aortic valve orifices $\equiv 0.70 \text{ cm}^2/\text{m}^2$ BSA) who were followed for at least five years after catheterization are now dead.¹⁴

The advanced age at death of patients with severe acquired stenosis has been a remarkably consistent feature of this disease; this age has averaged 63 years in males. In several studies that were based on analysis of data obtained at postmortem examination,^{2-5, 15-17} the average durations of various symptoms were as follows: angina pectoris three years, syncope three years, dyspnea two years, and congestive heart failure 1½ to 2 years. Moreover, in more than 80% of these patients who

Supplement V to Circulation, Vols. XXXVII and XXXVIII, July 1968

14. FRANK, S., AND ROSS, J., JR.: Natural history of severe, acquired valvular aortic stenosis. (abstr.) Amer J Cardiol 19: 128, 1967. patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated

usually begin during the sixth decade of life,

Average course of valvular aortic stenosis in adults. Data assembled from postmortem studies.

All-Cause Mortality (ITT) Patients Followed Post-Crossover

												<u> </u>
Standard Rx	179	121	85	67	56	43	33	25	22	17	6	
TAVR	179	138	124	110	101	89	81	72	63	53	35	

Instantaneous Risk of Death Hazard Function

Mortality or Stroke (ITT)

Cardiovascular Mortality by Paravalvular Leak

Stroke Analysis Instantaneous Risk of Stroke

TAVR Mortality Stratified by Oxygen Dependent COPD (ITT)

Univariate and Multivariate Predictors of Mortality after TAVR

Univariate Predictors

	Hazard Ratio	p-value
BMI > 26	0.64 (0.45 – 0.91)	0.01
History of Stroke or TIA	3.18 (1.28 – 7.92)	0.01
Peripheral Vascular Disease	1.58 (1.10 -2.27)	0.01
Oxygen Dependent COPD	1.63 (1.10 – 2.42)	0.01

Multivariate Predictors

	Hazard Ratio	p-value
BMI > 26	0.50 (0.34 – 0.73)	< 0.01
Oxygen dependent COPD	1.83 (1.22 – 2.75)	< 0.01
Peripheral Vascular Disease	1.53 (1.04 – 2.24)	0.03
Moderate or Severe MR	0.60 (0.37 – 0.97)	0.04

TAVR Cardiovascular Mortality Stratified by STS Score (ITT)

Mean Gradient & Valve Area (AT) Valve Durability (23mm)

Mean Gradient & Valve Area (AT) Valve Durability (26mm)

Mean Gradient & Valve Area (AT) Restricted to Patients with 4 Year Data

PART

ER

Paravalvular Leak (AT) Restricted to Patients with 4 Year Values

Paravalvular Leak (AT) Restricted to Patients with 5 Year Values

Mortality Stratified by Paravalvular Leak (AT) Valve Implant Patients

^{⊤н} PART

E R TRIAL

Numbers at Risk												
Mild	78	61	54	47	43	37	34	29	27	24	12	
ModSevere	23	17	16	15	13	12	10	10	9	6	4	
None-Trace	<mark>64</mark>	51	47	43	41	37	34	29	24	21	12	

Cardiovascular Mortality Stratified by Paravalvular Leak (AT) Valve Implant Patients

Numbers at Risk												
Mild	78	61	54	47	43	37	34	29	27	24	12	
ModSevere	23	17	16	15	13	12	10	10	9	6	4	
None-Trace	64	51	47	43	41	37	34	29	24	21	12	

Mortality by Paravalvular Leak Stratified by STS (AT) Valve Implant Patients

Cardiovascular Mortality by Paravalvular Leak Stratified by STS (AT) Valve Implant Patients

Mean Survival and Months Alive and Out of Hospital

		Survival	Out of Hospital
	Mean [†]	19.1	18.5
Standard Tharapy	Q1	4.8	4.5
Standard Therapy	Median	11.7	11.1
	Q3	30.9	29.9
TAVR	Mean [†]	31.7	30.6
	Q1	7.7	6.6
	Median	31.0	29.7
	Q3	NA	NA

† Means are biased downwards because of censoring

NYHA Class Over Time (ITT)

Death and Stroke Competing Risks (ITT) Standard Therapy

Death and Stroke Competing Risks (ITT) TAVR

Mortality by Paravalvular Leak Stratified by STS (AT)

Presented Slides That Include Number of Patients at Risk

All-Cause Mortality (ITT) Crossover Patients Censored at Crossover

Cardiovascular Mortality (ITT) Crossover Patients Censored at Crossover

All-Cause Mortality Stratified by STS Score (ITT)

Cardiovascular Mortality Stratified by STS Score (ITT)

TAVR Mortality Stratified by Age (ITT)

Mortality or Stroke (ITT)

Numbers at Risk Standard Rx **TAVR**