

TReatment with ADP receptor iNhibitorS:
Longitudinal Assessment of Treatment patterns
and Events after Acute Coronary Syndrome

TCT 2014 First Report Investigation presented on behalf of the TRANSLATE-ACS Investigators

Disclosures

Presenting Author has the following disclosures:

- Research grants to the Duke Clinical Research Institute:
 - Daiichi Sankyo
 - Eli Lilly
 - Gilead Sciences
 - Glaxo Smith Kline
 - Astra Zeneca
- Honoraria from:
 - Astra Zeneca
 - American College of Cardiology Foundation

Study Organization

Study Leadership

Duke Clinical Research Institute

Eric D. Peterson (PI)

Tracy Y. Wang (Co-PI)

Kevin J. Anstrom

Lisa A. McCoy

Linda Davidson-Ray

Study Sponsor

Daiichi Sankyo and Eli Lilly

Mark B. Effron

Marjorie E. Zettler

Brian A. Baker

Douglas E. Faries

Steering Committee

David J. Cohen

St Luke's Mid America Heart Institute

Gregg C. Fonarow
Ahmanson-UCLA

Timothy D. Henry

Cedars Sinai Medical Center

John C. Messenger

University of Colorado

Gregg W. Stone

Columbia University Medical Center

Background

- In TRITON-TIMI 38, prasugrel reduced the risk of adverse CV events compared with clopidogrel among ACS patients treated with PCI, however a higher risk of major bleeding was also observed.
- Limited data are available on the comparative effectiveness and safety of prasugrel vs. clopidogrel therapy in routine clinical practice in the United States.

Objectives

Compare prasugrel vs. clopidogrel among MI patients undergoing PCI:

- Effectiveness at 12 months
 - MACE = composite of all-cause death, MI, stroke, or unplanned coronary revascularization
 - Stent Thrombosis = Academic Research
 Consortium (ARC) definite stent thrombosis
- Safety at 12 months
 - Bleeding = GUSTO moderate or severe bleeding

Study Design

- Multicenter, prospective, observational study
- Enrollment between April 2010 and October 2012

Inclusion Criteria

 STEMI and NSTEMI patients treated with PCI and an ADP receptor inhibitor during the index hospitalization

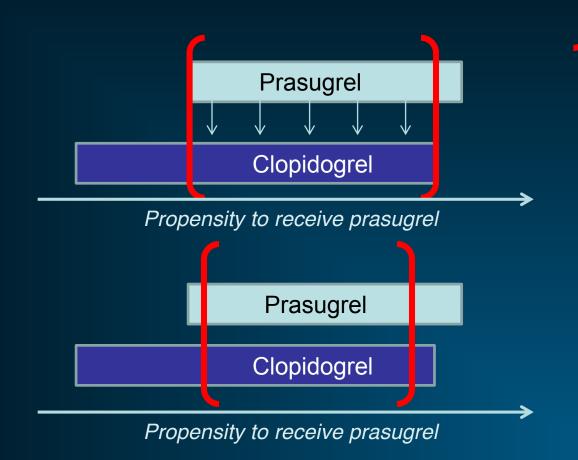
Exclusion Criteria

- unable to provide written consent for follow-up
- participating in another trial that specified ADP receptor inhibitor use in the first year post-MI

Methods

- Events independently validated
- Cumulative incidence of events by 12 months
 - Primary approach: "as treated" events censored
 >1 week after discontinuation or switch
 - Secondary approach: "intention to treat"
- Pre-specified primary multivariable analysis
 - Cox proportional hazards model using inverse probability weighting (IPW) based on propensity score – likelihood of prasugrel vs. clopidogrel

Primary & Secondary Models

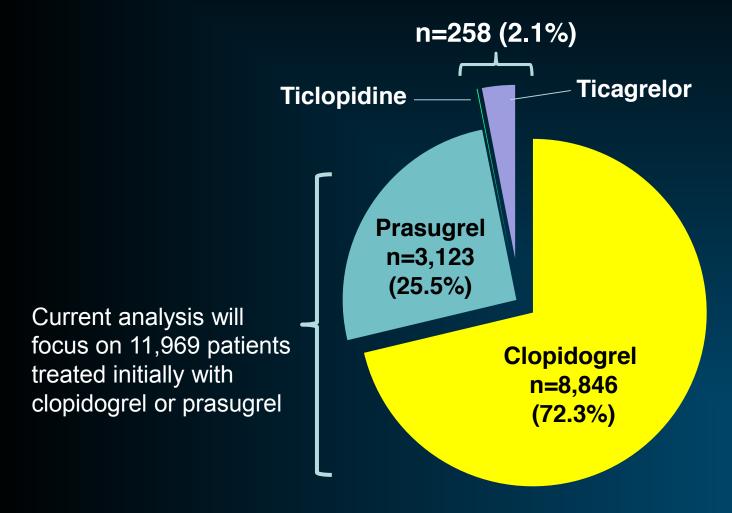

56 demographic, clinical, and procedural covariates

Primary Analysis
IPW

Clopidogrel Prasugrel

Secondary Analyses
Propensity Match
1:1 match

Trimmed Population >90% of covariates well-balanced with |SD|< 0.10


Study Centers

12,227 MI patients treated with PCI at 233 U.S. hospitals

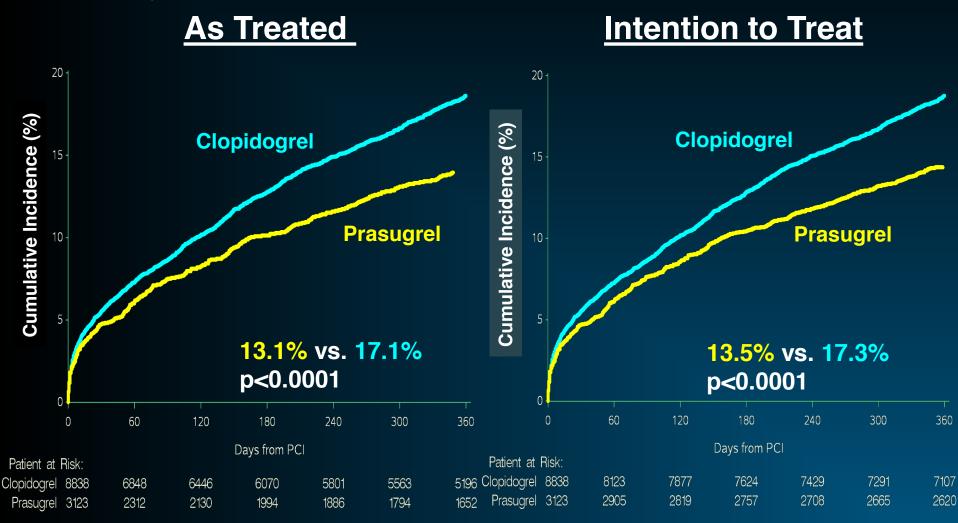
ADP Receptor Inhibitor Selection

Baseline Characteristics

	Prasugrel N=3,123	Clopidogrel N=8,846	Р
Age*, years	57 (50-63)	61 (53-70)	<0.0001
Female	21.5%	30.2%	<0.0001
White race	88.1%	87.9%	0.82
Uninsured	16.9%	14.1%	0.0002
STEMI (vs. NSTEMI)	58.6%	49.3%	<0.0001
Prior MI	14.6%	21.3%	<0.0001
Prior PCI	17.8%	23.0%	<0.0001
Prior CABG	5.5%	10.6%	<0.0001
Prior stroke/TIA	1.9%	6.6%	<0.0001
Diabetes	24.6%	27.2%	0.003
Baseline hemoglobin*, g/dL	14.7 (13.6-15.7)	14.1 (12.9-15.3)	<0.0001

Procedural Characteristics

	Prasugrel N=3,123	Clopidogrel N=8,846	Р
Culprit lesion location			<0.0001
Left main	0.4%	1.0%	
LAD	39.9%	36.2%	
Circumflex	21.1%	23.1%	
RCA	38.1%	39.2%	
Lesion in graft	2.9%	5.4%	<0.0001
Previously stented lesion	6.7%	7.4%	0.99
Bifurcation lesion	12.3%	10.9%	0.03
Multivessel PCI	24.2%	26.3%	<0.0001
DES used	75.9%	69.1%	<0.0001



In-Hospital Therapies

	Prasugrel N=3,123	Clopidogrel N=8,846	Р
Aspirin	98.1%	98.4%	0.35
Unfractionated heparin	69.4%	76.6%	<0.0001
LMW heparin	16.4%	20.3%	<0.0001
Bivalirudin	50.5%	47.7%	0.007
Fibrinolytic Glycoprotein Ilb/Illa inhibitor	3.0% 48.4%	4.3% 42.2%	<0.0001 <0.0001

Unadjusted MACE

Duke Clinical Research Institute

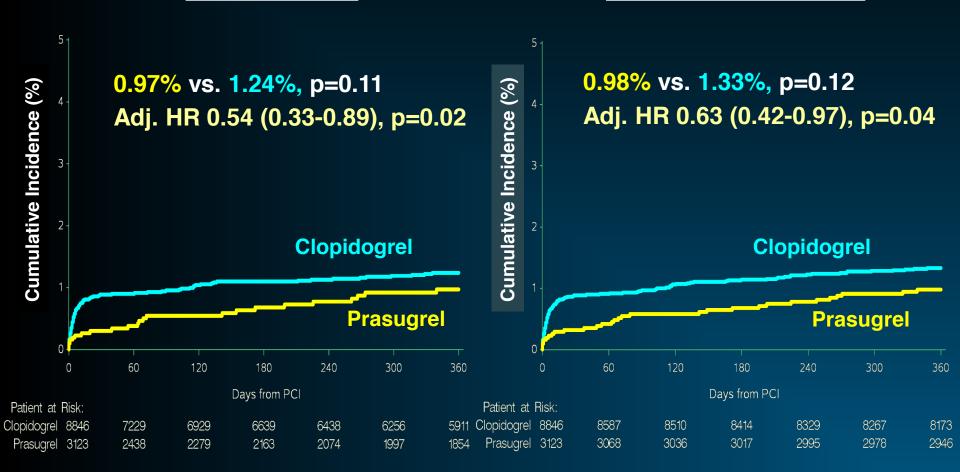
MACE = death, MI, stroke, or unplanned revascularization

Adjusted MACE

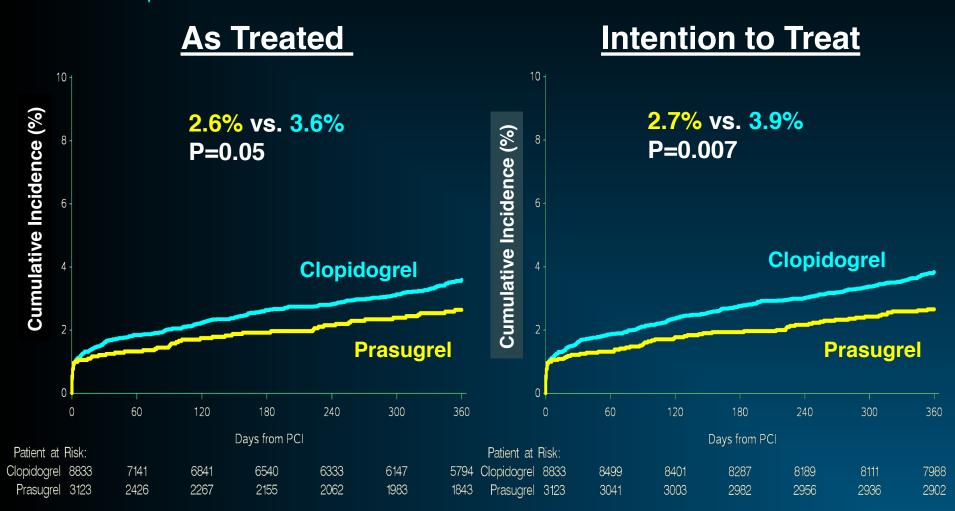
	Adj. HR	95% CI	Р
Primary Analysis			
IPW (as treated)	1.03	0.92 – 1.16	0.59
Secondary Analyses			
IPW (ITT)	1.00	0.91 – 1.11	0.95
Propensity-matched (as treated)	1.02	0.90 – 1.14	0.81
Propensity-matched (ITT)	1.03	0.93 – 1.14	0.57
Trimmed population (as treated)	0.89	0.76 – 1.05	0.18
Trimmed population (ITT)	0.91	0.79 – 1.06	0.23

HR = hazard ratio; CI = confidence interval IPW = inverse probability weighting; ITT = intention-to-treat

Individual MACE Endpoints


Unadjusted event rates	Adj. HR	95% CI	Р
All-cause mortality			
1.3% vs. 3.4%, p<0.0001	0.80	0.59 – 1.08	0.15
MI			
3.7% vs. 5.5%, p=0.0001	0.98	0.80 – 1.21	0.84
Stroke			
0.6% vs. 1.1%, p=0.009	0.90	0.55 – 1.48	0.69
Unplanned revascularization			
10.7% vs. 12.0%, p=0.05	1.12	0.99 – 1.28	0.08

Stent Thrombosis


As Treated

Intention to Treat

Unadjusted Bleeding

Duke Clinical Research Institute

Bleeding = GUSTO severe or moderate bleeding

Adjusted Bleeding

	Adj. HR	95% CI	Р
Primary Analysis			
IPW (as treated)	1.30	1.04 – 1.63	0.02
Secondary Analyses			
IPW (ITT)	1.30	1.07 – 1.59	0.01
Propensity-matched (as treated)	1.12	0.86 – 1.47	0.41
Propensity-matched (ITT)	1.10	0.88 – 1.37	0.43
Trimmed population (as treated)	0.94	0.64 – 1.36	0.73
Trimmed population (ITT)	0.83	0.58 – 1.18	0.29

HR = hazard ratio; CI = confidence interval IPW = inverse probability weighting; ITT = intention-to-treat

Limitations

- Potential for residual confounding in nonrandomized, observational comparison of outcomes despite multivariable adjustment
- Peri-procedural MIs may be under-reported as biomarkers are not routinely measured post-PCI in clinical practice
- Site participation was voluntary and longitudinal follow-up required informed consent. Results may not be generalized to a broader U.S. population

Conclusions

- In U.S. community practice, patients treated with prasugrel vs. clopidogrel differ significantly.
- While unadjusted comparisons demonstrated lower MACE in patients receiving prasugrel vs. clopidogrel, these differences were not significant after risk adjustment.
 - However, prasugrel was associated with significantly lower adjusted risk of stent thrombosis.
- Prasugrel was associated with significantly higher adjusted bleeding risk relative to clopidogrel.
 - These differences were not significant among patients more likely to be treated with prasugrel in community practice.

Thank you to all TRANSLATE-ACS Investigators Top 20 Enrollers

Timothy Henry, MD

Minneapolis Heart Institute Minneapolis, MN

Michael Chang, MD

Mercy General Hospital Sacramento, CA

Anjan Gupta, MD

Áurora St. Luke's MC Milwaukee, WI

William Smith, MD

New Hanover Regional Medical Center Wilmington, NC

Tracy Wang, MD

Duke University Durham, NC

Rolf Kreutz, MD

Indiana University Health-Methodist Hospital Indianapolis, IN

Richard Bach, MD

Washington University School of Medicine, St. Louis, MI

Ron Waksman, MD

Washington Hospital Center Washington, DC

Robert Stenberg, MD

Conemaugh Valley Memorial Hospital Johnstown, PA

Mark Koenig, MD

Saint Thomas Hospital Nashville, TN

Neal Gaither, MD

Winchester Medical Center Winchester, VA

Peter Berger, MD

Geisinger Medical Center Danville, PA

Harry Wallner, MD

Trinity Medical Center Rock Island, IL

Chanwit Roongsritong, MD

Renown Regional Medical Center Reno, NV

George Kramer, MD

Wellstar Kennestone Hospital Marietta, GA

Luis Gruberg, MD

Stony Brook University Medical Center Stony Brook, NY

Stephen Lewis, MD

Bethesda North Hospital Cincinnati, OH

Chowdhury Ahsan, MD

University Medical Center of Southern Nevada Las Vegas, NV

David Brill, MD

Washington Adventist Hospital Takoma Park, MD

Thomas LeGalley, MD

Marquette General Hospital Marquette, MI