Vascular Closure Devices Versus Manual Compression After Femoral Artery Access

the ISAR-CLOSURE Randomized Trial

Stefanie Schüpke (Schulz)¹, Sandra Helde¹, Senta Gewalt¹, Tareq Ibrahim², Roland Schmidt³, Lorenz Bott-Flügel⁴, Andreas Stein³, Nadar Joghetai⁴, Maryam Linhardt¹, Katharina Haas¹, Katharina Hoppe⁵, Philipp Groha¹, Christian Bradaric², Ilka Ott¹, Iva Simunovic¹, Robert Byrne¹, Tanja Morath¹, Sebastian Kufner¹, Salvatore Cassese¹, Petra Hoppmann², Massimiliano Fusaro¹, Julinda Mehilli⁶, Heribert Schunkert¹, Karl-Ludwig Laugwitz², Adnan Kastrati¹

¹ Deutsches Herzzentrum München, Munich, Germany, ² 1. Medizinische Klinik, Klinikum rechts der Isar, Munich, Germany, ³ Krankenhaus der Barmherzigen Brüder, Innere Medizin II, Munich, Germany, ⁴ Klinikum Landkreis Erding,⁵ Schoen Klinik Starnberger See, Berg, Germany, ⁶ Klinikum der Universität München, Medizinische Klinik und Poliklinik I, Munich, Germany

Disclosure Statement of Financial Interest

I, Stefanie Schüpke, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

All faculty disclosures are available on the CRF Events App and online at www.crf.org/tct

- The role of vascular closure devices (VCD) for the achievement of hemostasis after femoral artery puncture remains controversial
- Increased efficacy, i.e. reduced time to hemostasis and earlier ambulation, has been a consistent finding across different trials of VCDs
- However, meta-analyses suggest an increased risk of vascular complications with VCD compared to manual compression
 Koreny et al. JAMA 2004;1:350-357

Background

 Size of most RCTs has generally been modest, permitting evaluation of efficacy but precluding definitive assessment of safety

 Moreover, comparative efficacy studies between devices used in contemporary practice remain a scientific gap

Primary objective

Comparison of 2 hemostasis strategies: Vascular closure device (VCD) vs. manual compression

<u>Secondary objective</u>

Comparison of 2 types of VCD: Femoseal vs. Exoseal

... in pts undergoing transfemoral coronary angiography

Hypothesis

In patients undergoing transfemoral coronary angiography, VCD are <u>non-</u> <u>inferior</u> to manual compression to terms of vascular access site complications

Design

 Investigator-initiated, randomized, large-scale, multicenter, open-label trial

Recruitment period: 04/2011 – 05/2014

Study Organisation

Participating Centers:

Deutsches Herzzentrum Munich Klinikum rechts der Isar, Munich Krankenhaus der Barmherzigen Brüder, Munich Klinikum Landkreis Erding

Steering Committee:

Adnan Kastrati (Study Chair) Maryam Linhardt (PI) Tareq Ibrahim Julinda Mehilli

Coordinating Center:

ISAResearch Center Munich

Event Adjudication Committee:

Olga Bruskina (Chair) Gjin Ndrepepa Andreas Stein

Imaging Core Lab:

Corinna Böttiger

Eligibility Criteria

Major Inclusion Criteria:

Pts undergoing coronary angiography with a 6 French sheath via the common femoral artery Diameter of common femoral artery of > 5 mm

Major Exclusion Criteria:

Implantation of a VCD within the last 30 days Symptomatic leg ischemia Prior TEA or patch plastic of the common femoral artery Planned invasive diagnostic/interventional procedure in the following 90 days Heavily calcified vessel Active bleeding or bleeding diathesis Severe arterial hypertension (>220/110 mmHg) Local infection Autoimmune disease Allergy to resorbable suture Pregnancy

Endpoints

• Primary endpoint:

Vascular access site complications at 30 days after randomisation i.e. the composite of hematoma ≥ 5 cm, arteriovenous fistula, pseudoaneurysm, access-site related bleeding*, acute ipsilateral leg ischemia, need for vascular surgical or interventional treatment or local infection

Secondary endpoints:

- Time to hemostasis
- Repeat manual compression
- VCD failure

6tct201/

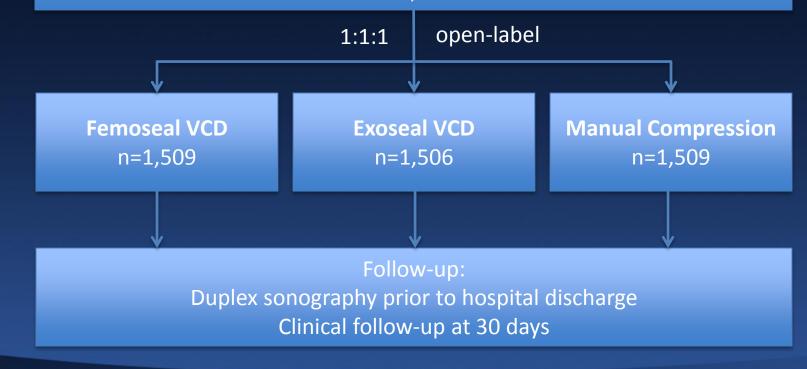
*Adapted from REPLACE-2 criteria: Hb drop \geq 3 g/dl with evident bleeding, Hb drop \geq 4 g/dl with/without evident bleeding or bleeding requiring blood transfusion

ARDIOVASCULAR ESEARCH FOUNDATIO t the heart of innovation

Sample Size Calculation

- Assumptions:
 - Incidence of the primary endpoint in the manual compression group: 5%
 - Margin of non-inferiority: 2% (absolute)
 - Power 80%
 - 1-sided α -Level 0.025

→ Enrolment of 4,500 patients required



Study Flow

Patients undergoing diagnostic coronary angiography via the common femoral artery (after angiography of access site) n=4,524

Baseline Characteristics (1/2)

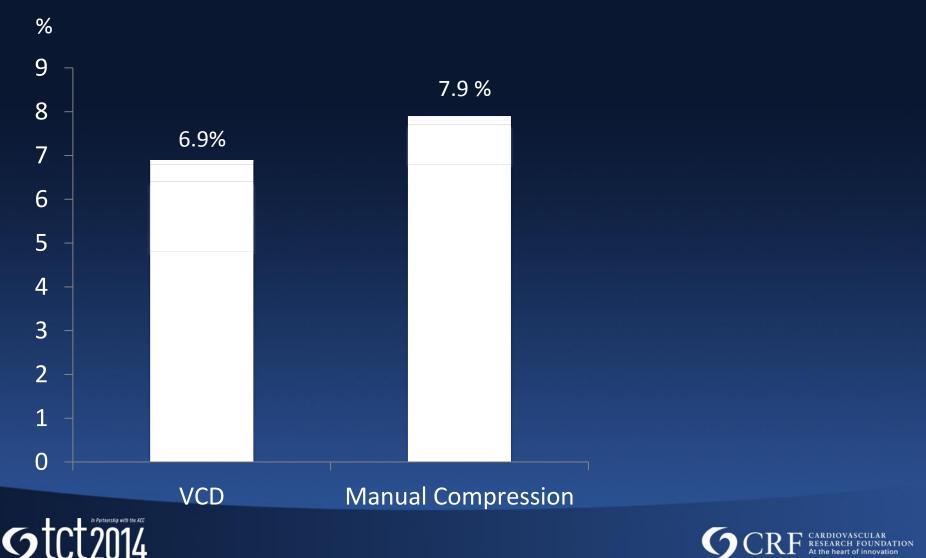
	Vascular Closure Device (n=3015)	Manual Compression (n=1509)
Age, years	67.4 [58.4-74.7]	68.4 [59.5-74.8]
Female	917 (30)	478 (32)
Arterial Hypertension	2599 (86.2)	1319 (87.4)
Hypercholesterolemia	1942 (64)	997 (66)
Diabetes Mellitus	584 (19.4)	321 (21.3)
- Insulin-Requiring	142 (4.7)	65 (4.3)
Family History	944 (31)	471 (31)
Active or Former Smoker	1249 (41)	602 (40)

Baseline Characteristics (2/2)

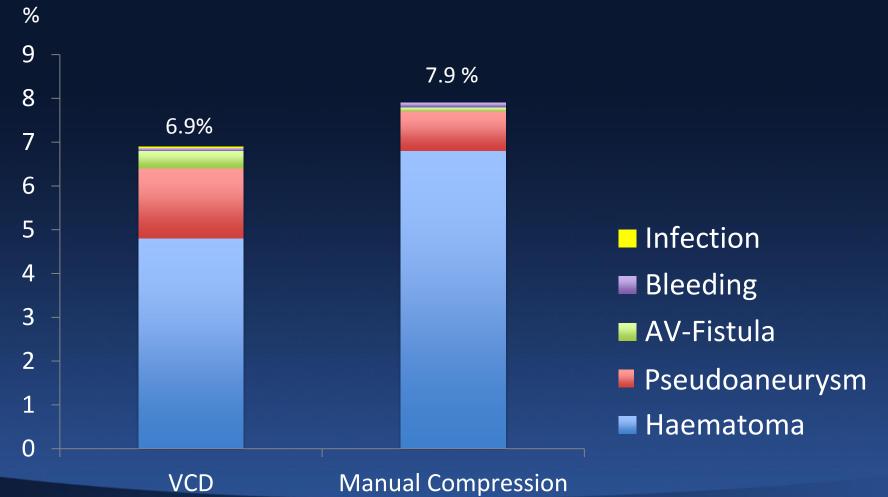
	Vascular Closure Device (n=3015)	Manual Compression (n=1509)
History of Prior MI	813 (27.0)	393 (26.0)
History of Prior PCI	1785 (59)	882 (58)
History of Prior CABG	255 (8.5)	135 (8.9)
Body Mass Index, kg/m ²	27.1 [24.5-29.8]	27.0 [24.5-30.2]
Renal Failure		
- Not Dialysis Dependent	312 (10.3)	161 (10.7)
- Dialysis Dependent	11 (0.4)	3 (0.2)
Platelet Count, x10 ⁹ /Liter	208 [176-245]	206 [174-246]

Antithrombotic Medication On Admission

	Vascular Closure Device (n=3015)	Manual Compression (n=1509)
Acetylsalicylic acid	2072 (67)	1025 (68)
ADP-Receptor Blocker		
- Clopidogrel	1058 (35.1)	503 (33.3)
- Prasugrel	131 (4.3)	48 (3.2)
- Ticagrelor	29 (1.0)	16 (1.1)
Oral Anticoagulation		
- Coumadins	330 (10.9)	175 (11.6)
- Rivaroxaban	42 (1.4)	33 (2.2)
- Dabigatran	14 (0.5)	6 (0.4)
- Apixaban	2 (0.1)	2 (0.1)

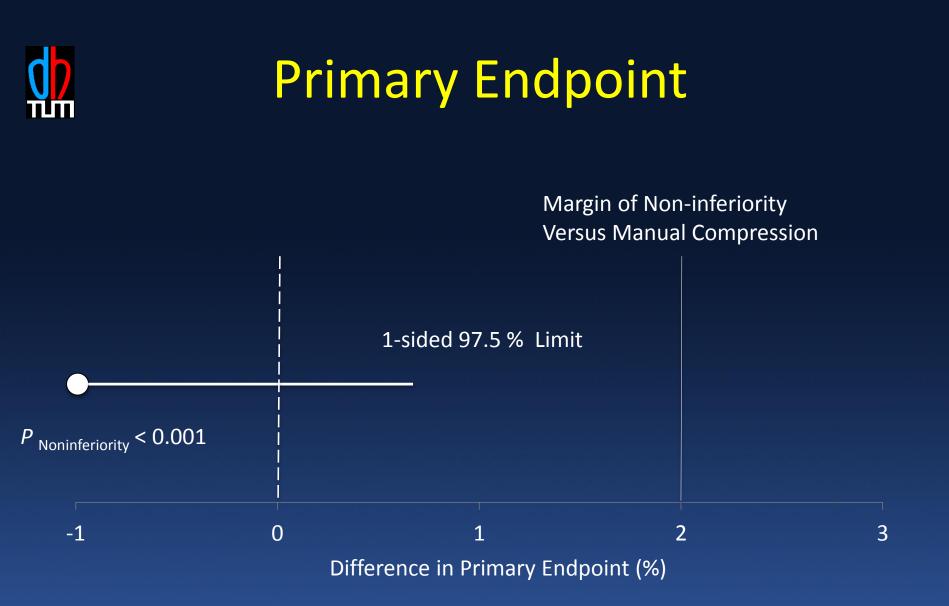

Angiographic And Procedural Characteristics

	Vascular Closure Device (n=3015)	Manual Compression (n=1509)
Ejection Fraction, %	60 [52-62]	60 [52-62]
No. of Diseased Vessels		
- No Obstructive CAD	996 (33.0)	516 (34.2)
- 1	522 (17.3)	269 (17.8)
- 2	567 (18.8)	272 (18.0)
- 3	930 (30.8)	452 (30.0)
Multivessel Disease	1497 (49.7)	724 (48.0)
Arterial Blood Pressure		
- Systolic, mmHg	140 [129-160]	140 [128-160]
- Diastolic, mmHg	75 [65-80]	75 [65-80]



Primary Endpoint: the Composite of Vascular Access Site Complications

Primary Endpoint: the Composite of Vascular Access Site Complications


Primary Endpoint - Individual Components -

	Vascular Closure Device (n=3015)	Manual Compression (n=1509)	Р*
Primary Composite Endpoint	208 (6.9)	119 (7.9)	0.227
- Hematoma ≥5 cm	145 (4.8)	102 (6.8)	0.006
- Pseudoaneurysm	53 (1.8)	23 (1.5)	0.564
- Arteriovenous Fistula	12 (0.4)	2 (0.1)	0.130
 Access Site-Related Major Bleeding 	3 (0.1)	3 (0.2)	0.387
- Acute Ipsilateral Leg Ischaemia	0	0	
- Need for Vascular Surgical or Interventional Treatment	0	0	
- Local Infection	1	0	0.479

*Conventional superiority testing with a significance level of p<0.025

Secondary Endpoints

	Vascular Closure Device (n=3015)	Manual Compression (n=1509)	P *
Time to Hemostasis, minutes	1 [0.5-2.0]	10 [10-15]	<0.001
Repeat Manual Compression	53 (1.8)	10 (0.7)	0.003

*Conventional superiority testing with a significance level of p<0.025

Secondary Comparison: Femoseal vs. Exoseal

Secondary Comparison: Femoseal vs. Exoseal

	Femoseal (n=1509)	Exoseal (n=1506)	Ρ*
Primary Endpoint of Vascular Access Site Complications	90 (6.0)	118 (7.8)	0.043
- Hematoma ≥5 cm	65 (4.3)	80 (5.3)	0.197
- Pseudoaneurysm	22 (1.5)	31 (2.1)	0.210
- Arteriovenous Fistula	4 (0.3)	8 (0.5)	0.246
- Access-Site-Related Major Bleeding*	2 (0.1)	1 (0.1)	0.565
- Acute Ipsilateral Leg Ischaemia	0	0	
 Need for Vascular Surgical/Interventional Treatment 	0	0	
- Local Infection	1 (0.1)	0	0.318

*Conventional superiority testing with a significance level of p<0.025

Secondary Comparison: Femoseal vs. Exoseal

	Femoseal (n=1509)	Exoseal (n=1506)	Р*
Time to Hemostasis	0.5 [0.2-1.0]	2 [1.0-2.0]	<0.001
Repeat Manual Compression	22 (1.5)	31 (2.1)	0.210
Closure Device Failure	80 (5.3)	184 (12.2)	<0.001

*Conventional superiority testing with a significance level of p<0.025

Summary And Conclusion (1/2)

- In patients undergoing transfemoral coronary angiography, VCD are non-inferior to manual compression in terms of vascular access site complications and reduce time-to-hemostasis
- The increase in efficacy of VCD with no tradeoff in safety provides a sound rationale for the use of VCD over manual compression in daily routine

Summary And Conclusion (2/2)

- The use of the intravascular Femoseal VCD was associated with a tendency towards less vascular access-site complications as compared to the extravascular Exoseal VCD
- Time-to-hemostasis was shorter and device deployment failures were less frequent with the Femoseal VCD compared to the Exoseal VCD

Thanks for your attention!

