New Technique to Calculate CT-Derived Fractional Flow Reserve: Is It Accurate?

New Technique to Calculate CT Fractional Flow Reserve

This study describes the accuracy of the new computed tomography (CT) technique to calculate fractional flow reserve (FFR).

 

Other CT techniques to measure FFR use allometric scaling and assume coronary microvascular resistance. However, instead of assuming these parameters, this new technique calculates them based on coronary and aorta lumen deformation. The accuracy of this new technique has not been established yet.

 

The study prospectively analyzed 42 patients (78 vessels) undergoing multislice CT (320 detectors) in addition to conventional invasive FFR measurement.

 

Deformation of coronary cross-sectional lumen and aorta acquired over diastole was used to derive CT-FFR. Researchers used a conventional computer and the pertinent software. 

 

The first 12 patients were used to determine CT-FFR optimal cutoff value, which turned out to be identical to the conventional FFR cutoff value (≤0.8). The next 30 patients validated these results.

 

The first cohort showed that CT-FFR optimal cutoff value was 0.8, with 67% sensitivity and 91% specificity.

 

In the validation cohort, CT-FFR was successfully measured in 56 of the 58 analyzed vessels (97%). Compared to anatomical CT images alone, CT-FFR ≤0.8 showed higher specificity (87% vs. 74%) and positive predictive value (74% vs. 60%) with comparable sensitivity (78% vs. 79%) and negative predictive value (89% vs. 88%).

 

Mean analysis time of CF-FFR per patient was 27.07 ± 7.54 min.

 

Conclusion

This new technique to measure CT-FFR is feasible and extremely easy to replicate with a conventional FFR cutoff value of 0.8. It requires a short processing time and can be done in a conventional computer.

 

Editorial Comment

Computed tomography FFR is a less invasive diagnostic tool, it is safe, and in some countries, less expensive than conventional coronary angiography. On the other hand, it adds radiation and contrast and does not solve the problem with ad hoc PCI, which makes it useless in case of patients at high risk of heart disease.

 

Original Title: Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis- A Comparison with Invasive FFR for Detection of Functionally Significant Stenosis.

Reference: Ko BS et al. J Am Coll Cardiol Img. 2016. Online before print.


Subscribe to our weekly newsletter

Get the latest scientific articles on interventional cardiology

We are interested in your opinion. Please, leave your comments, thoughts, questions, etc., below. They will be most welcome.

More articles by this author

EMERALD II: Non-Invasive Coronary Anatomy and Physiology (CCTA) in ACS Prediction

Despite steady progress in secondary prevention and medical treatment optimization (OMT), acute coronary syndrome (ACS) remains one of the leading causes of cardiovascular morbimortality....

Left or Right Transradial Approach? Comparing Radiation Exposure in Coronary Procedures

Radiation exposure during percutaneous procedures is a problem both for patients and operators. The transradial is currently the preferred approach, vs. femoral; however, whether...

Dual Antiplatelet Therapy in Diabetic Patients with AMI: De-Escalation Strategy

Diabetes Mellitus (DM) is a common comorbidity in patients hospitalized for acute coronary syndrome (ACS) of increasing prevalence over the last decade, associated with...

COILSEAL: Use of Coils in Percutaneous Coronary Intervention, Useful for Complication Management?

The use of coils as vascular closing tool has been steadily expanding beyond its traditional role in neuroradiology into coronary territory, where it remains...

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Related Articles

SOLACI Sessionsspot_img

Recent Articles

Transapical TMVR in High Risk Patients: Intrepid 5-Year Outcomes

Moderate to severe mitral valve regurgitation (MR) continues is still a high prevalence condition with bad prognosis, particularly among the elderly with left ventricular...

EMERALD II: Non-Invasive Coronary Anatomy and Physiology (CCTA) in ACS Prediction

Despite steady progress in secondary prevention and medical treatment optimization (OMT), acute coronary syndrome (ACS) remains one of the leading causes of cardiovascular morbimortality....

Impact of Balloon Post-Dilation on the Long-Term Durability of Bioprostheses after TAVR

Balloon post-dilation (BPD) during transcatheter aortic valve replacement (TAVR) allows for the optimization of prosthesis expansion and the reduction of residual paravalvular aortic regurgitation....